--- tags: - generated_from_trainer datasets: - i2b22014 metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-deid2014-ner-v5-classweights results: - task: name: Token Classification type: token-classification dataset: name: i2b22014 type: i2b22014 config: i2b22014-deid split: train args: i2b22014-deid metrics: - name: Precision type: precision value: 0.8832236842105263 - name: Recall type: recall value: 0.6910561632502987 - name: F1 type: f1 value: 0.7754112732711052 - name: Accuracy type: accuracy value: 0.9883040491052534 --- # electramed-small-deid2014-ner-v5-classweights This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co./giacomomiolo/electramed_small_scivocab) on the i2b22014 dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 - Precision: 0.8832 - Recall: 0.6911 - F1: 0.7754 - Accuracy: 0.9883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0001 | 1.0 | 1838 | 0.0008 | 0.7702 | 0.3780 | 0.5071 | 0.9771 | | 0.0 | 2.0 | 3676 | 0.0007 | 0.8753 | 0.5671 | 0.6883 | 0.9827 | | 0.0 | 3.0 | 5514 | 0.0006 | 0.8074 | 0.4128 | 0.5463 | 0.9775 | | 0.0 | 4.0 | 7352 | 0.0007 | 0.8693 | 0.6102 | 0.7170 | 0.9848 | | 0.0 | 5.0 | 9190 | 0.0006 | 0.8710 | 0.6022 | 0.7121 | 0.9849 | | 0.0 | 6.0 | 11028 | 0.0007 | 0.8835 | 0.6547 | 0.7521 | 0.9867 | | 0.0 | 7.0 | 12866 | 0.0009 | 0.8793 | 0.6661 | 0.7579 | 0.9873 | | 0.0 | 8.0 | 14704 | 0.0008 | 0.8815 | 0.6740 | 0.7639 | 0.9876 | | 0.0 | 9.0 | 16542 | 0.0009 | 0.8812 | 0.6851 | 0.7709 | 0.9880 | | 0.0 | 10.0 | 18380 | 0.0009 | 0.8832 | 0.6911 | 0.7754 | 0.9883 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1