chintagunta85 commited on
Commit
27ac1ca
1 Parent(s): 16ed97f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - i2b22014
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: electramed-small-deid2014-ner-v5-classweights
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: i2b22014
19
+ type: i2b22014
20
+ config: i2b22014-deid
21
+ split: train
22
+ args: i2b22014-deid
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.8832236842105263
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.6910561632502987
30
+ - name: F1
31
+ type: f1
32
+ value: 0.7754112732711052
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9883040491052534
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # electramed-small-deid2014-ner-v5-classweights
42
+
43
+ This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the i2b22014 dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.0009
46
+ - Precision: 0.8832
47
+ - Recall: 0.6911
48
+ - F1: 0.7754
49
+ - Accuracy: 0.9883
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 16
70
+ - eval_batch_size: 16
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 10
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.0001 | 1.0 | 1838 | 0.0008 | 0.7702 | 0.3780 | 0.5071 | 0.9771 |
81
+ | 0.0 | 2.0 | 3676 | 0.0007 | 0.8753 | 0.5671 | 0.6883 | 0.9827 |
82
+ | 0.0 | 3.0 | 5514 | 0.0006 | 0.8074 | 0.4128 | 0.5463 | 0.9775 |
83
+ | 0.0 | 4.0 | 7352 | 0.0007 | 0.8693 | 0.6102 | 0.7170 | 0.9848 |
84
+ | 0.0 | 5.0 | 9190 | 0.0006 | 0.8710 | 0.6022 | 0.7121 | 0.9849 |
85
+ | 0.0 | 6.0 | 11028 | 0.0007 | 0.8835 | 0.6547 | 0.7521 | 0.9867 |
86
+ | 0.0 | 7.0 | 12866 | 0.0009 | 0.8793 | 0.6661 | 0.7579 | 0.9873 |
87
+ | 0.0 | 8.0 | 14704 | 0.0008 | 0.8815 | 0.6740 | 0.7639 | 0.9876 |
88
+ | 0.0 | 9.0 | 16542 | 0.0009 | 0.8812 | 0.6851 | 0.7709 | 0.9880 |
89
+ | 0.0 | 10.0 | 18380 | 0.0009 | 0.8832 | 0.6911 | 0.7754 | 0.9883 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.22.1
95
+ - Pytorch 1.12.1+cu113
96
+ - Datasets 2.5.1
97
+ - Tokenizers 0.12.1