--- tags: - generated_from_trainer datasets: - species_800 metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-SPECIES800-ner results: - task: name: Token Classification type: token-classification dataset: name: species_800 type: species_800 config: species_800 split: train args: species_800 metrics: - name: Precision type: precision value: 0.6221498371335505 - name: Recall type: recall value: 0.7470664928292047 - name: F1 type: f1 value: 0.6789099526066352 - name: Accuracy type: accuracy value: 0.9831434110359828 --- # electramed-small-SPECIES800-ner This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co./giacomomiolo/electramed_small_scivocab) on the species_800 dataset. It achieves the following results on the evaluation set: - Loss: 0.0513 - Precision: 0.6221 - Recall: 0.7471 - F1: 0.6789 - Accuracy: 0.9831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0536 | 1.0 | 359 | 0.0971 | 0.6138 | 0.5554 | 0.5832 | 0.9795 | | 0.0309 | 2.0 | 718 | 0.0692 | 0.6175 | 0.6063 | 0.6118 | 0.9808 | | 0.0563 | 3.0 | 1077 | 0.0582 | 0.6424 | 0.6910 | 0.6658 | 0.9819 | | 0.0442 | 4.0 | 1436 | 0.0553 | 0.5900 | 0.7523 | 0.6613 | 0.9814 | | 0.0069 | 5.0 | 1795 | 0.0511 | 0.6291 | 0.7497 | 0.6841 | 0.9827 | | 0.0141 | 6.0 | 2154 | 0.0505 | 0.6579 | 0.7471 | 0.6996 | 0.9837 | | 0.0052 | 7.0 | 2513 | 0.0513 | 0.5965 | 0.7458 | 0.6628 | 0.9826 | | 0.0573 | 8.0 | 2872 | 0.0509 | 0.6140 | 0.7445 | 0.6730 | 0.9828 | | 0.0203 | 9.0 | 3231 | 0.0516 | 0.6118 | 0.7458 | 0.6722 | 0.9830 | | 0.0101 | 10.0 | 3590 | 0.0513 | 0.6221 | 0.7471 | 0.6789 | 0.9831 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1