File size: 1,846 Bytes
601a4f2
 
 
 
 
 
16fe5db
601a4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
base_model: facebook/bart-large-cnn
model-index:
- name: bart-large-cnn_summarizer_30216
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn_summarizer_30216

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9800
- Rouge1: 51.6258
- Rouge2: 33.4629
- Rougel: 40.3034
- Rougelsum: 47.8482
- Gen Len: 105.0622

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 0.8653        | 1.0   | 12086 | 0.9274          | 51.1144 | 32.972  | 39.8981 | 47.2905   | 100.2417 |
| 0.6741        | 2.0   | 24172 | 0.9330          | 51.5965 | 33.5021 | 40.4048 | 47.8046   | 103.9732 |
| 0.4802        | 3.0   | 36258 | 0.9800          | 51.6258 | 33.4629 | 40.3034 | 47.8482   | 105.0622 |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1