|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer, DefaultDataCollator |
|
from transformers.optimization import AdamW |
|
from transformers.data.data_collator import default_data_collator |
|
|
|
squad = load_dataset("squad", split="train[:5000]") |
|
squad = squad.train_test_split(test_size=0.2) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
|
|
def preprocess_function(examples): |
|
questions = [q.strip() for q in examples["question"]] |
|
inputs = tokenizer( |
|
questions, |
|
examples["context"], |
|
max_length=384, |
|
truncation="only_second", |
|
return_offsets_mapping=True, |
|
padding="max_length", |
|
) |
|
|
|
offset_mapping = inputs.pop("offset_mapping") |
|
answers = examples["answers"] |
|
start_positions = [] |
|
end_positions = [] |
|
|
|
for i, offset in enumerate(offset_mapping): |
|
answer = answers[i] |
|
start_char = answer["answer_start"][0] |
|
end_char = answer["answer_start"][0] + len(answer["text"][0]) |
|
sequence_ids = inputs.sequence_ids(i) |
|
|
|
|
|
idx = 0 |
|
while sequence_ids[idx] != 1: |
|
idx += 1 |
|
context_start = idx |
|
while sequence_ids[idx] == 1: |
|
idx += 1 |
|
context_end = idx - 1 |
|
|
|
|
|
if offset[context_start][0] > end_char or offset[context_end][1] < start_char: |
|
start_positions.append(0) |
|
end_positions.append(0) |
|
else: |
|
|
|
idx = context_start |
|
while idx <= context_end and offset[idx][0] <= start_char: |
|
idx += 1 |
|
start_positions.append(idx - 1) |
|
|
|
idx = context_end |
|
while idx >= context_start and offset[idx][1] >= end_char: |
|
idx -= 1 |
|
end_positions.append(idx + 1) |
|
|
|
inputs["start_positions"] = start_positions |
|
inputs["end_positions"] = end_positions |
|
return inputs |
|
|
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained("bert-base-uncased") |
|
|
|
|
|
optimizer = AdamW(model.parameters(), lr=2e-5) |
|
|
|
|
|
loss_fn = default_data_collator |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="question-answering", |
|
evaluation_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=16, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
push_to_hub=True, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
tokenizer=tokenizer, |
|
data_collator=loss_fn, |
|
optimizer=optimizer, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
|
|
|
|
|