--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - trl - reward-trainer - generated_from_trainer metrics: - accuracy model-index: - name: deberta-reward-model results: [] --- # deberta-reward-model This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0095 - Accuracy: 0.995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0433 | 2.0 | 100 | 0.0274 | 0.9875 | | 0.0017 | 4.0 | 200 | 0.0105 | 0.995 | | 0.0001 | 6.0 | 300 | 0.0095 | 0.995 | | 0.0001 | 8.0 | 400 | 0.0090 | 0.995 | | 0.0002 | 10.0 | 500 | 0.0095 | 0.995 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0