--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: CausalLM/34b-beta model-index: - name: model-update results: [] --- # model-update This model is a fine-tuned version of [CausalLM/34b-beta](https://huggingface.co./CausalLM/34b-beta) on the oncc_medqa_instruct dataset. ## Training procedure ``` git clone https://github.com/chenhaodev/LLaMA-Factory; cd LLaMA-Factory; pip install -r requirements.txt; python create_pods.py 'CausalLM/34b-beta' 'NVIDIA A100 80GB PCIe' 1 xxx xxx xxx "--per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lora_target q_proj,v_proj --template llama2 --dataset oncc_medqa_instruct" 902i850eaw ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.0.1+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2