|
{"current_steps": 10, "total_steps": 1854, "loss": 1.1424, "accuracy": 0.6187499761581421, "learning_rate": 4.999648198770648e-06, "epoch": 0.01616488179430188, "percentage": 0.54, "elapsed_time": "0:02:50", "remaining_time": "8:45:01"} |
|
{"current_steps": 20, "total_steps": 1854, "loss": 1.1175, "accuracy": 0.6625000238418579, "learning_rate": 4.998578646361359e-06, "epoch": 0.03232976358860376, "percentage": 1.08, "elapsed_time": "0:05:47", "remaining_time": "8:51:51"} |
|
{"current_steps": 30, "total_steps": 1854, "loss": 1.0537, "accuracy": 0.581250011920929, "learning_rate": 4.996791614004449e-06, "epoch": 0.04849464538290564, "percentage": 1.62, "elapsed_time": "0:08:46", "remaining_time": "8:53:00"} |
|
{"current_steps": 40, "total_steps": 1854, "loss": 1.1081, "accuracy": 0.5687500238418579, "learning_rate": 4.994287614855618e-06, "epoch": 0.06465952717720752, "percentage": 2.16, "elapsed_time": "0:11:29", "remaining_time": "8:41:08"} |
|
{"current_steps": 50, "total_steps": 1854, "loss": 1.0767, "accuracy": 0.5687500238418579, "learning_rate": 4.991067367951343e-06, "epoch": 0.0808244089715094, "percentage": 2.7, "elapsed_time": "0:14:43", "remaining_time": "8:51:21"} |
|
{"current_steps": 60, "total_steps": 1854, "loss": 0.9847, "accuracy": 0.5625, "learning_rate": 4.987131798002389e-06, "epoch": 0.09698929076581128, "percentage": 3.24, "elapsed_time": "0:17:32", "remaining_time": "8:44:42"} |
|
{"current_steps": 70, "total_steps": 1854, "loss": 1.0458, "accuracy": 0.53125, "learning_rate": 4.982482035128285e-06, "epoch": 0.11315417256011315, "percentage": 3.78, "elapsed_time": "0:20:29", "remaining_time": "8:42:21"} |
|
{"current_steps": 80, "total_steps": 1854, "loss": 0.8918, "accuracy": 0.606249988079071, "learning_rate": 4.9771194145328e-06, "epoch": 0.12931905435441504, "percentage": 4.31, "elapsed_time": "0:23:28", "remaining_time": "8:40:22"} |
|
{"current_steps": 90, "total_steps": 1854, "loss": 0.892, "accuracy": 0.5687500238418579, "learning_rate": 4.971045476120532e-06, "epoch": 0.1454839361487169, "percentage": 4.85, "elapsed_time": "0:26:25", "remaining_time": "8:37:58"} |
|
{"current_steps": 100, "total_steps": 1854, "loss": 0.9278, "accuracy": 0.5687500238418579, "learning_rate": 4.964261964054713e-06, "epoch": 0.1616488179430188, "percentage": 5.39, "elapsed_time": "0:29:21", "remaining_time": "8:35:01"} |
|
{"current_steps": 110, "total_steps": 1854, "loss": 0.9485, "accuracy": 0.5874999761581421, "learning_rate": 4.956770826256372e-06, "epoch": 0.17781369973732067, "percentage": 5.93, "elapsed_time": "0:32:19", "remaining_time": "8:32:27"} |
|
{"current_steps": 120, "total_steps": 1854, "loss": 0.9568, "accuracy": 0.5625, "learning_rate": 4.94857421384497e-06, "epoch": 0.19397858153162256, "percentage": 6.47, "elapsed_time": "0:35:17", "remaining_time": "8:30:00"} |
|
{"current_steps": 130, "total_steps": 1854, "loss": 0.971, "accuracy": 0.581250011920929, "learning_rate": 4.939674480520701e-06, "epoch": 0.21014346332592443, "percentage": 7.01, "elapsed_time": "0:38:21", "remaining_time": "8:28:41"} |
|
{"current_steps": 140, "total_steps": 1854, "loss": 0.9144, "accuracy": 0.574999988079071, "learning_rate": 4.930074181888613e-06, "epoch": 0.2263083451202263, "percentage": 7.55, "elapsed_time": "0:41:31", "remaining_time": "8:28:27"} |
|
{"current_steps": 150, "total_steps": 1854, "loss": 0.9202, "accuracy": 0.574999988079071, "learning_rate": 4.91977607472475e-06, "epoch": 0.2424732269145282, "percentage": 8.09, "elapsed_time": "0:44:18", "remaining_time": "8:23:15"} |
|
{"current_steps": 160, "total_steps": 1854, "loss": 0.8729, "accuracy": 0.612500011920929, "learning_rate": 4.908783116184534e-06, "epoch": 0.2586381087088301, "percentage": 8.63, "elapsed_time": "0:47:12", "remaining_time": "8:19:53"} |
|
{"current_steps": 170, "total_steps": 1854, "loss": 0.8988, "accuracy": 0.606249988079071, "learning_rate": 4.897098462953598e-06, "epoch": 0.27480299050313195, "percentage": 9.17, "elapsed_time": "0:50:08", "remaining_time": "8:16:39"} |
|
{"current_steps": 180, "total_steps": 1854, "loss": 0.894, "accuracy": 0.643750011920929, "learning_rate": 4.884725470341331e-06, "epoch": 0.2909678722974338, "percentage": 9.71, "elapsed_time": "0:53:00", "remaining_time": "8:13:00"} |
|
{"current_steps": 190, "total_steps": 1854, "loss": 1.0229, "accuracy": 0.518750011920929, "learning_rate": 4.871667691317377e-06, "epoch": 0.3071327540917357, "percentage": 10.25, "elapsed_time": "0:55:58", "remaining_time": "8:10:10"} |
|
{"current_steps": 200, "total_steps": 1854, "loss": 0.8476, "accuracy": 0.5874999761581421, "learning_rate": 4.857928875491392e-06, "epoch": 0.3232976358860376, "percentage": 10.79, "elapsed_time": "0:58:45", "remaining_time": "8:05:54"} |
|
{"current_steps": 210, "total_steps": 1854, "loss": 0.8401, "accuracy": 0.6000000238418579, "learning_rate": 4.843512968036314e-06, "epoch": 0.33946251768033947, "percentage": 11.33, "elapsed_time": "1:01:31", "remaining_time": "8:01:41"} |
|
{"current_steps": 220, "total_steps": 1854, "loss": 1.0531, "accuracy": 0.625, "learning_rate": 4.828424108555486e-06, "epoch": 0.35562739947464134, "percentage": 11.87, "elapsed_time": "1:04:27", "remaining_time": "7:58:43"} |
|
{"current_steps": 230, "total_steps": 1854, "loss": 0.8963, "accuracy": 0.5687500238418579, "learning_rate": 4.812666629893957e-06, "epoch": 0.3717922812689432, "percentage": 12.41, "elapsed_time": "1:07:18", "remaining_time": "7:55:18"} |
|
{"current_steps": 240, "total_steps": 1854, "loss": 0.9194, "accuracy": 0.518750011920929, "learning_rate": 4.796245056894273e-06, "epoch": 0.3879571630632451, "percentage": 12.94, "elapsed_time": "1:10:24", "remaining_time": "7:53:28"} |
|
{"current_steps": 250, "total_steps": 1854, "loss": 0.859, "accuracy": 0.5375000238418579, "learning_rate": 4.779164105097148e-06, "epoch": 0.404122044857547, "percentage": 13.48, "elapsed_time": "1:13:25", "remaining_time": "7:51:02"} |
|
{"current_steps": 260, "total_steps": 1854, "loss": 0.8698, "accuracy": 0.59375, "learning_rate": 4.761428679387373e-06, "epoch": 0.42028692665184886, "percentage": 14.02, "elapsed_time": "1:16:23", "remaining_time": "7:48:20"} |
|
{"current_steps": 270, "total_steps": 1854, "loss": 0.8795, "accuracy": 0.581250011920929, "learning_rate": 4.7430438725853515e-06, "epoch": 0.4364518084461507, "percentage": 14.56, "elapsed_time": "1:19:21", "remaining_time": "7:45:36"} |
|
{"current_steps": 280, "total_steps": 1854, "loss": 0.9006, "accuracy": 0.5687500238418579, "learning_rate": 4.724014963984669e-06, "epoch": 0.4526166902404526, "percentage": 15.1, "elapsed_time": "1:22:26", "remaining_time": "7:43:26"} |
|
{"current_steps": 290, "total_steps": 1854, "loss": 0.8091, "accuracy": 0.612500011920929, "learning_rate": 4.704347417836116e-06, "epoch": 0.4687815720347545, "percentage": 15.64, "elapsed_time": "1:25:22", "remaining_time": "7:40:25"} |
|
{"current_steps": 300, "total_steps": 1854, "loss": 0.8522, "accuracy": 0.5562499761581421, "learning_rate": 4.684046881778603e-06, "epoch": 0.4849464538290564, "percentage": 16.18, "elapsed_time": "1:28:13", "remaining_time": "7:37:00"} |
|
{"current_steps": 310, "total_steps": 1854, "loss": 0.8398, "accuracy": 0.5375000238418579, "learning_rate": 4.663119185217409e-06, "epoch": 0.5011113356233583, "percentage": 16.72, "elapsed_time": "1:31:11", "remaining_time": "7:34:11"} |
|
{"current_steps": 320, "total_steps": 1854, "loss": 0.8005, "accuracy": 0.6187499761581421, "learning_rate": 4.641570337650232e-06, "epoch": 0.5172762174176602, "percentage": 17.26, "elapsed_time": "1:34:07", "remaining_time": "7:31:12"} |
|
{"current_steps": 330, "total_steps": 1854, "loss": 0.8954, "accuracy": 0.5375000238418579, "learning_rate": 4.61940652694154e-06, "epoch": 0.533441099211962, "percentage": 17.8, "elapsed_time": "1:37:13", "remaining_time": "7:29:01"} |
|
{"current_steps": 340, "total_steps": 1854, "loss": 0.8675, "accuracy": 0.5625, "learning_rate": 4.596634117545689e-06, "epoch": 0.5496059810062639, "percentage": 18.34, "elapsed_time": "1:40:08", "remaining_time": "7:25:54"} |
|
{"current_steps": 350, "total_steps": 1854, "loss": 0.8615, "accuracy": 0.574999988079071, "learning_rate": 4.573259648679335e-06, "epoch": 0.5657708628005658, "percentage": 18.88, "elapsed_time": "1:43:10", "remaining_time": "7:23:22"} |
|
{"current_steps": 360, "total_steps": 1854, "loss": 0.8515, "accuracy": 0.543749988079071, "learning_rate": 4.549289832443663e-06, "epoch": 0.5819357445948676, "percentage": 19.42, "elapsed_time": "1:46:10", "remaining_time": "7:20:38"} |
|
{"current_steps": 370, "total_steps": 1854, "loss": 0.801, "accuracy": 0.5562499761581421, "learning_rate": 4.524731551896978e-06, "epoch": 0.5981006263891695, "percentage": 19.96, "elapsed_time": "1:49:08", "remaining_time": "7:17:43"} |
|
{"current_steps": 380, "total_steps": 1854, "loss": 0.8422, "accuracy": 0.543749988079071, "learning_rate": 4.4995918590781925e-06, "epoch": 0.6142655081834714, "percentage": 20.5, "elapsed_time": "1:52:04", "remaining_time": "7:14:43"} |
|
{"current_steps": 390, "total_steps": 1854, "loss": 0.8495, "accuracy": 0.6187499761581421, "learning_rate": 4.473877972981797e-06, "epoch": 0.6304303899777733, "percentage": 21.04, "elapsed_time": "1:55:08", "remaining_time": "7:12:12"} |
|
{"current_steps": 400, "total_steps": 1854, "loss": 0.8054, "accuracy": 0.5562499761581421, "learning_rate": 4.447597277484894e-06, "epoch": 0.6465952717720752, "percentage": 21.57, "elapsed_time": "1:57:58", "remaining_time": "7:08:48"} |
|
{"current_steps": 410, "total_steps": 1854, "loss": 0.9327, "accuracy": 0.5375000238418579, "learning_rate": 4.42075731922687e-06, "epoch": 0.6627601535663771, "percentage": 22.11, "elapsed_time": "2:00:51", "remaining_time": "7:05:38"} |
|
{"current_steps": 420, "total_steps": 1854, "loss": 0.8332, "accuracy": 0.6312500238418579, "learning_rate": 4.3933658054423465e-06, "epoch": 0.6789250353606789, "percentage": 22.65, "elapsed_time": "2:03:47", "remaining_time": "7:02:39"} |
|
{"current_steps": 430, "total_steps": 1854, "loss": 0.9048, "accuracy": 0.518750011920929, "learning_rate": 4.365430601748003e-06, "epoch": 0.6950899171549808, "percentage": 23.19, "elapsed_time": "2:06:41", "remaining_time": "6:59:32"} |
|
{"current_steps": 440, "total_steps": 1854, "loss": 0.8394, "accuracy": 0.5687500238418579, "learning_rate": 4.336959729883925e-06, "epoch": 0.7112547989492827, "percentage": 23.73, "elapsed_time": "2:09:36", "remaining_time": "6:56:32"} |
|
{"current_steps": 450, "total_steps": 1854, "loss": 0.8479, "accuracy": 0.5874999761581421, "learning_rate": 4.307961365410118e-06, "epoch": 0.7274196807435845, "percentage": 24.27, "elapsed_time": "2:12:42", "remaining_time": "6:54:01"} |
|
{"current_steps": 460, "total_steps": 1854, "loss": 0.831, "accuracy": 0.6000000238418579, "learning_rate": 4.278443835358854e-06, "epoch": 0.7435845625378864, "percentage": 24.81, "elapsed_time": "2:15:42", "remaining_time": "6:51:15"} |
|
{"current_steps": 470, "total_steps": 1854, "loss": 0.8504, "accuracy": 0.5625, "learning_rate": 4.248415615843523e-06, "epoch": 0.7597494443321883, "percentage": 25.35, "elapsed_time": "2:18:30", "remaining_time": "6:47:51"} |
|
{"current_steps": 480, "total_steps": 1854, "loss": 0.8127, "accuracy": 0.612500011920929, "learning_rate": 4.217885329624666e-06, "epoch": 0.7759143261264903, "percentage": 25.89, "elapsed_time": "2:21:29", "remaining_time": "6:45:02"} |
|
{"current_steps": 490, "total_steps": 1854, "loss": 0.8348, "accuracy": 0.550000011920929, "learning_rate": 4.186861743633911e-06, "epoch": 0.7920792079207921, "percentage": 26.43, "elapsed_time": "2:24:24", "remaining_time": "6:42:00"} |
|
{"current_steps": 500, "total_steps": 1854, "loss": 0.8803, "accuracy": 0.5375000238418579, "learning_rate": 4.155353766456497e-06, "epoch": 0.808244089715094, "percentage": 26.97, "elapsed_time": "2:27:31", "remaining_time": "6:39:30"} |
|
{"current_steps": 500, "total_steps": 1854, "eval_loss": 0.8619003891944885, "epoch": 0.808244089715094, "percentage": 26.97, "elapsed_time": "2:33:41", "remaining_time": "6:56:10"} |
|
{"current_steps": 510, "total_steps": 1854, "loss": 0.8606, "accuracy": 0.550000011920929, "learning_rate": 4.123370445773134e-06, "epoch": 0.8244089715093958, "percentage": 27.51, "elapsed_time": "2:36:45", "remaining_time": "6:53:05"} |
|
{"current_steps": 520, "total_steps": 1854, "loss": 0.8752, "accuracy": 0.6187499761581421, "learning_rate": 4.090920965761906e-06, "epoch": 0.8405738533036977, "percentage": 28.05, "elapsed_time": "2:39:34", "remaining_time": "6:49:23"} |
|
{"current_steps": 530, "total_steps": 1854, "loss": 0.8179, "accuracy": 0.6000000238418579, "learning_rate": 4.058014644460991e-06, "epoch": 0.8567387350979996, "percentage": 28.59, "elapsed_time": "2:42:16", "remaining_time": "6:45:21"} |
|
{"current_steps": 540, "total_steps": 1854, "loss": 0.8497, "accuracy": 0.5874999761581421, "learning_rate": 4.024660931092939e-06, "epoch": 0.8729036168923014, "percentage": 29.13, "elapsed_time": "2:45:17", "remaining_time": "6:42:13"} |
|
{"current_steps": 550, "total_steps": 1854, "loss": 0.8507, "accuracy": 0.675000011920929, "learning_rate": 3.990869403351272e-06, "epoch": 0.8890684986866033, "percentage": 29.67, "elapsed_time": "2:48:20", "remaining_time": "6:39:08"} |
|
{"current_steps": 560, "total_steps": 1854, "loss": 0.864, "accuracy": 0.4625000059604645, "learning_rate": 3.956649764650206e-06, "epoch": 0.9052333804809052, "percentage": 30.2, "elapsed_time": "2:51:33", "remaining_time": "6:36:24"} |
|
{"current_steps": 570, "total_steps": 1854, "loss": 0.8159, "accuracy": 0.637499988079071, "learning_rate": 3.92201184133826e-06, "epoch": 0.9213982622752072, "percentage": 30.74, "elapsed_time": "2:54:25", "remaining_time": "6:32:54"} |
|
{"current_steps": 580, "total_steps": 1854, "loss": 0.8214, "accuracy": 0.53125, "learning_rate": 3.886965579876572e-06, "epoch": 0.937563144069509, "percentage": 31.28, "elapsed_time": "2:57:19", "remaining_time": "6:29:30"} |
|
{"current_steps": 590, "total_steps": 1854, "loss": 0.8603, "accuracy": 0.5625, "learning_rate": 3.851521043982716e-06, "epoch": 0.9537280258638109, "percentage": 31.82, "elapsed_time": "3:00:21", "remaining_time": "6:26:23"} |
|
{"current_steps": 600, "total_steps": 1854, "loss": 0.8172, "accuracy": 0.6312500238418579, "learning_rate": 3.81568841174086e-06, "epoch": 0.9698929076581128, "percentage": 32.36, "elapsed_time": "3:03:33", "remaining_time": "6:23:37"} |
|
{"current_steps": 610, "total_steps": 1854, "loss": 0.798, "accuracy": 0.5687500238418579, "learning_rate": 3.7794779726790664e-06, "epoch": 0.9860577894524146, "percentage": 32.9, "elapsed_time": "3:06:33", "remaining_time": "6:20:26"} |
|
{"current_steps": 620, "total_steps": 1854, "loss": 0.8118, "accuracy": 0.625, "learning_rate": 3.7429001248146096e-06, "epoch": 1.0022226712467166, "percentage": 33.44, "elapsed_time": "3:09:42", "remaining_time": "6:17:34"} |
|
{"current_steps": 630, "total_steps": 1854, "loss": 0.8821, "accuracy": 0.5562499761581421, "learning_rate": 3.7059653716681227e-06, "epoch": 1.0183875530410185, "percentage": 33.98, "elapsed_time": "3:12:37", "remaining_time": "6:14:15"} |
|
{"current_steps": 640, "total_steps": 1854, "loss": 0.7692, "accuracy": 0.612500011920929, "learning_rate": 3.668684319247463e-06, "epoch": 1.0345524348353203, "percentage": 34.52, "elapsed_time": "3:15:27", "remaining_time": "6:10:45"} |
|
{"current_steps": 650, "total_steps": 1854, "loss": 0.8402, "accuracy": 0.5687500238418579, "learning_rate": 3.6310676730021373e-06, "epoch": 1.0507173166296222, "percentage": 35.06, "elapsed_time": "3:18:21", "remaining_time": "6:07:24"} |
|
{"current_steps": 660, "total_steps": 1854, "loss": 0.8843, "accuracy": 0.5562499761581421, "learning_rate": 3.593126234749178e-06, "epoch": 1.066882198423924, "percentage": 35.6, "elapsed_time": "3:21:23", "remaining_time": "6:04:20"} |
|
{"current_steps": 670, "total_steps": 1854, "loss": 0.8313, "accuracy": 0.6187499761581421, "learning_rate": 3.554870899571343e-06, "epoch": 1.083047080218226, "percentage": 36.14, "elapsed_time": "3:24:27", "remaining_time": "6:01:18"} |
|
{"current_steps": 680, "total_steps": 1854, "loss": 0.8024, "accuracy": 0.6187499761581421, "learning_rate": 3.5163126526885373e-06, "epoch": 1.0992119620125278, "percentage": 36.68, "elapsed_time": "3:27:31", "remaining_time": "5:58:17"} |
|
{"current_steps": 690, "total_steps": 1854, "loss": 0.8092, "accuracy": 0.5687500238418579, "learning_rate": 3.4774625663033484e-06, "epoch": 1.1153768438068297, "percentage": 37.22, "elapsed_time": "3:30:28", "remaining_time": "5:55:03"} |
|
{"current_steps": 700, "total_steps": 1854, "loss": 0.7881, "accuracy": 0.5625, "learning_rate": 3.4383317964216067e-06, "epoch": 1.1315417256011315, "percentage": 37.76, "elapsed_time": "3:33:29", "remaining_time": "5:51:56"} |
|
{"current_steps": 710, "total_steps": 1854, "loss": 0.8534, "accuracy": 0.6187499761581421, "learning_rate": 3.398931579648877e-06, "epoch": 1.1477066073954334, "percentage": 38.3, "elapsed_time": "3:36:37", "remaining_time": "5:49:02"} |
|
{"current_steps": 720, "total_steps": 1854, "loss": 0.7957, "accuracy": 0.5375000238418579, "learning_rate": 3.359273229963813e-06, "epoch": 1.1638714891897353, "percentage": 38.83, "elapsed_time": "3:39:40", "remaining_time": "5:45:58"} |
|
{"current_steps": 730, "total_steps": 1854, "loss": 0.837, "accuracy": 0.574999988079071, "learning_rate": 3.319368135469285e-06, "epoch": 1.1800363709840371, "percentage": 39.37, "elapsed_time": "3:42:31", "remaining_time": "5:42:38"} |
|
{"current_steps": 740, "total_steps": 1854, "loss": 0.778, "accuracy": 0.668749988079071, "learning_rate": 3.279227755122228e-06, "epoch": 1.196201252778339, "percentage": 39.91, "elapsed_time": "3:45:35", "remaining_time": "5:39:36"} |
|
{"current_steps": 750, "total_steps": 1854, "loss": 0.846, "accuracy": 0.581250011920929, "learning_rate": 3.2388636154431417e-06, "epoch": 1.2123661345726409, "percentage": 40.45, "elapsed_time": "3:48:42", "remaining_time": "5:36:38"} |
|
{"current_steps": 760, "total_steps": 1854, "loss": 0.7952, "accuracy": 0.5874999761581421, "learning_rate": 3.198287307206192e-06, "epoch": 1.2285310163669427, "percentage": 40.99, "elapsed_time": "3:51:39", "remaining_time": "5:33:28"} |
|
{"current_steps": 770, "total_steps": 1854, "loss": 0.8251, "accuracy": 0.5625, "learning_rate": 3.157510482110856e-06, "epoch": 1.2446958981612446, "percentage": 41.53, "elapsed_time": "3:54:42", "remaining_time": "5:30:25"} |
|
{"current_steps": 780, "total_steps": 1854, "loss": 0.8661, "accuracy": 0.5625, "learning_rate": 3.116544849436077e-06, "epoch": 1.2608607799555465, "percentage": 42.07, "elapsed_time": "3:57:46", "remaining_time": "5:27:23"} |
|
{"current_steps": 790, "total_steps": 1854, "loss": 0.7785, "accuracy": 0.6625000238418579, "learning_rate": 3.0754021726778848e-06, "epoch": 1.2770256617498483, "percentage": 42.61, "elapsed_time": "4:00:46", "remaining_time": "5:24:17"} |
|
{"current_steps": 800, "total_steps": 1854, "loss": 0.8595, "accuracy": 0.5375000238418579, "learning_rate": 3.0340942661714463e-06, "epoch": 1.2931905435441502, "percentage": 43.15, "elapsed_time": "4:03:52", "remaining_time": "5:21:18"} |
|
{"current_steps": 810, "total_steps": 1854, "loss": 0.8377, "accuracy": 0.625, "learning_rate": 2.992632991698512e-06, "epoch": 1.3093554253384523, "percentage": 43.69, "elapsed_time": "4:06:48", "remaining_time": "5:18:06"} |
|
{"current_steps": 820, "total_steps": 1854, "loss": 0.7382, "accuracy": 0.581250011920929, "learning_rate": 2.9510302550812537e-06, "epoch": 1.3255203071327541, "percentage": 44.23, "elapsed_time": "4:09:43", "remaining_time": "5:14:54"} |
|
{"current_steps": 830, "total_steps": 1854, "loss": 0.773, "accuracy": 0.581250011920929, "learning_rate": 2.9092980027634325e-06, "epoch": 1.341685188927056, "percentage": 44.77, "elapsed_time": "4:12:46", "remaining_time": "5:11:50"} |
|
{"current_steps": 840, "total_steps": 1854, "loss": 0.8783, "accuracy": 0.574999988079071, "learning_rate": 2.867448218379927e-06, "epoch": 1.3578500707213579, "percentage": 45.31, "elapsed_time": "4:15:41", "remaining_time": "5:08:38"} |
|
{"current_steps": 850, "total_steps": 1854, "loss": 0.9094, "accuracy": 0.5874999761581421, "learning_rate": 2.825492919315559e-06, "epoch": 1.3740149525156597, "percentage": 45.85, "elapsed_time": "4:18:40", "remaining_time": "5:05:31"} |
|
{"current_steps": 860, "total_steps": 1854, "loss": 0.8093, "accuracy": 0.59375, "learning_rate": 2.7834441532542482e-06, "epoch": 1.3901798343099616, "percentage": 46.39, "elapsed_time": "4:21:43", "remaining_time": "5:02:30"} |
|
{"current_steps": 870, "total_steps": 1854, "loss": 0.8335, "accuracy": 0.574999988079071, "learning_rate": 2.74131399471945e-06, "epoch": 1.4063447161042635, "percentage": 46.93, "elapsed_time": "4:24:41", "remaining_time": "4:59:22"} |
|
{"current_steps": 880, "total_steps": 1854, "loss": 0.8403, "accuracy": 0.5874999761581421, "learning_rate": 2.6991145416068947e-06, "epoch": 1.4225095978985653, "percentage": 47.46, "elapsed_time": "4:27:50", "remaining_time": "4:56:26"} |
|
{"current_steps": 890, "total_steps": 1854, "loss": 0.7832, "accuracy": 0.637499988079071, "learning_rate": 2.6568579117106143e-06, "epoch": 1.4386744796928672, "percentage": 48.0, "elapsed_time": "4:30:52", "remaining_time": "4:53:24"} |
|
{"current_steps": 900, "total_steps": 1854, "loss": 0.8259, "accuracy": 0.550000011920929, "learning_rate": 2.6145562392432544e-06, "epoch": 1.454839361487169, "percentage": 48.54, "elapsed_time": "4:33:49", "remaining_time": "4:50:15"} |
|
{"current_steps": 910, "total_steps": 1854, "loss": 0.7723, "accuracy": 0.59375, "learning_rate": 2.5722216713516682e-06, "epoch": 1.471004243281471, "percentage": 49.08, "elapsed_time": "4:36:41", "remaining_time": "4:47:02"} |
|
{"current_steps": 920, "total_steps": 1854, "loss": 0.8097, "accuracy": 0.543749988079071, "learning_rate": 2.5298663646288064e-06, "epoch": 1.4871691250757728, "percentage": 49.62, "elapsed_time": "4:39:45", "remaining_time": "4:44:01"} |
|
{"current_steps": 930, "total_steps": 1854, "loss": 0.8507, "accuracy": 0.65625, "learning_rate": 2.487502481622879e-06, "epoch": 1.503334006870075, "percentage": 50.16, "elapsed_time": "4:42:35", "remaining_time": "4:40:46"} |
|
{"current_steps": 940, "total_steps": 1854, "loss": 0.8309, "accuracy": 0.550000011920929, "learning_rate": 2.4451421873448253e-06, "epoch": 1.5194988886643768, "percentage": 50.7, "elapsed_time": "4:45:34", "remaining_time": "4:37:40"} |
|
{"current_steps": 950, "total_steps": 1854, "loss": 0.8488, "accuracy": 0.5687500238418579, "learning_rate": 2.40279764577506e-06, "epoch": 1.5356637704586786, "percentage": 51.24, "elapsed_time": "4:48:35", "remaining_time": "4:34:36"} |
|
{"current_steps": 960, "total_steps": 1854, "loss": 0.756, "accuracy": 0.6625000238418579, "learning_rate": 2.3604810163705242e-06, "epoch": 1.5518286522529805, "percentage": 51.78, "elapsed_time": "4:51:36", "remaining_time": "4:31:33"} |
|
{"current_steps": 970, "total_steps": 1854, "loss": 0.7224, "accuracy": 0.59375, "learning_rate": 2.3182044505730364e-06, "epoch": 1.5679935340472824, "percentage": 52.32, "elapsed_time": "4:54:31", "remaining_time": "4:28:24"} |
|
{"current_steps": 980, "total_steps": 1854, "loss": 0.7869, "accuracy": 0.574999988079071, "learning_rate": 2.275980088319941e-06, "epoch": 1.5841584158415842, "percentage": 52.86, "elapsed_time": "4:57:31", "remaining_time": "4:25:21"} |
|
{"current_steps": 990, "total_steps": 1854, "loss": 0.7727, "accuracy": 0.543749988079071, "learning_rate": 2.2338200545580577e-06, "epoch": 1.600323297635886, "percentage": 53.4, "elapsed_time": "5:00:24", "remaining_time": "4:22:10"} |
|
{"current_steps": 1000, "total_steps": 1854, "loss": 0.7341, "accuracy": 0.6312500238418579, "learning_rate": 2.191736455761947e-06, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "5:03:14", "remaining_time": "4:18:57"} |
|
{"current_steps": 1000, "total_steps": 1854, "eval_loss": 0.8449718356132507, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "5:09:21", "remaining_time": "4:24:11"} |
|
{"current_steps": 1010, "total_steps": 1854, "loss": 0.8184, "accuracy": 0.643750011920929, "learning_rate": 2.1497413764574673e-06, "epoch": 1.6326530612244898, "percentage": 54.48, "elapsed_time": "5:12:41", "remaining_time": "4:21:17"} |
|
{"current_steps": 1020, "total_steps": 1854, "loss": 0.762, "accuracy": 0.59375, "learning_rate": 2.1078468757516395e-06, "epoch": 1.6488179430187917, "percentage": 55.02, "elapsed_time": "5:15:34", "remaining_time": "4:18:02"} |
|
{"current_steps": 1030, "total_steps": 1854, "loss": 0.8102, "accuracy": 0.574999988079071, "learning_rate": 2.0660649838698145e-06, "epoch": 1.6649828248130936, "percentage": 55.56, "elapsed_time": "5:18:32", "remaining_time": "4:14:50"} |
|
{"current_steps": 1040, "total_steps": 1854, "loss": 0.8507, "accuracy": 0.5687500238418579, "learning_rate": 2.0244076987011284e-06, "epoch": 1.6811477066073954, "percentage": 56.09, "elapsed_time": "5:21:32", "remaining_time": "4:11:40"} |
|
{"current_steps": 1050, "total_steps": 1854, "loss": 0.8306, "accuracy": 0.581250011920929, "learning_rate": 1.982886982353251e-06, "epoch": 1.6973125884016973, "percentage": 56.63, "elapsed_time": "5:24:31", "remaining_time": "4:08:29"} |
|
{"current_steps": 1060, "total_steps": 1854, "loss": 0.8194, "accuracy": 0.6312500238418579, "learning_rate": 1.941514757717392e-06, "epoch": 1.7134774701959992, "percentage": 57.17, "elapsed_time": "5:27:34", "remaining_time": "4:05:22"} |
|
{"current_steps": 1070, "total_steps": 1854, "loss": 0.8345, "accuracy": 0.5562499761581421, "learning_rate": 1.9003029050445953e-06, "epoch": 1.729642351990301, "percentage": 57.71, "elapsed_time": "5:30:43", "remaining_time": "4:02:19"} |
|
{"current_steps": 1080, "total_steps": 1854, "loss": 0.7903, "accuracy": 0.550000011920929, "learning_rate": 1.8592632585342523e-06, "epoch": 1.745807233784603, "percentage": 58.25, "elapsed_time": "5:33:40", "remaining_time": "3:59:07"} |
|
{"current_steps": 1090, "total_steps": 1854, "loss": 0.797, "accuracy": 0.574999988079071, "learning_rate": 1.8184076029358527e-06, "epoch": 1.7619721155789048, "percentage": 58.79, "elapsed_time": "5:36:32", "remaining_time": "3:55:53"} |
|
{"current_steps": 1100, "total_steps": 1854, "loss": 0.7993, "accuracy": 0.574999988079071, "learning_rate": 1.7777476701649318e-06, "epoch": 1.7781369973732066, "percentage": 59.33, "elapsed_time": "5:39:35", "remaining_time": "3:52:46"} |
|
{"current_steps": 1110, "total_steps": 1854, "loss": 0.7819, "accuracy": 0.53125, "learning_rate": 1.7372951359341925e-06, "epoch": 1.7943018791675085, "percentage": 59.87, "elapsed_time": "5:42:25", "remaining_time": "3:49:30"} |
|
{"current_steps": 1120, "total_steps": 1854, "loss": 0.7723, "accuracy": 0.606249988079071, "learning_rate": 1.6970616164007547e-06, "epoch": 1.8104667609618104, "percentage": 60.41, "elapsed_time": "5:45:07", "remaining_time": "3:46:10"} |
|
{"current_steps": 1130, "total_steps": 1854, "loss": 0.8279, "accuracy": 0.606249988079071, "learning_rate": 1.6570586648305276e-06, "epoch": 1.8266316427561122, "percentage": 60.95, "elapsed_time": "5:48:01", "remaining_time": "3:42:59"} |
|
{"current_steps": 1140, "total_steps": 1854, "loss": 0.8118, "accuracy": 0.606249988079071, "learning_rate": 1.6172977682806151e-06, "epoch": 1.842796524550414, "percentage": 61.49, "elapsed_time": "5:50:52", "remaining_time": "3:39:45"} |
|
{"current_steps": 1150, "total_steps": 1854, "loss": 0.8238, "accuracy": 0.59375, "learning_rate": 1.5777903443007586e-06, "epoch": 1.858961406344716, "percentage": 62.03, "elapsed_time": "5:53:47", "remaining_time": "3:36:35"} |
|
{"current_steps": 1160, "total_steps": 1854, "loss": 0.8087, "accuracy": 0.625, "learning_rate": 1.5385477376547226e-06, "epoch": 1.8751262881390178, "percentage": 62.57, "elapsed_time": "5:56:46", "remaining_time": "3:33:27"} |
|
{"current_steps": 1170, "total_steps": 1854, "loss": 0.8049, "accuracy": 0.5874999761581421, "learning_rate": 1.4995812170625845e-06, "epoch": 1.89129116993332, "percentage": 63.11, "elapsed_time": "5:59:46", "remaining_time": "3:30:19"} |
|
{"current_steps": 1180, "total_steps": 1854, "loss": 0.8149, "accuracy": 0.6187499761581421, "learning_rate": 1.4609019719648666e-06, "epoch": 1.9074560517276218, "percentage": 63.65, "elapsed_time": "6:02:46", "remaining_time": "3:27:12"} |
|
{"current_steps": 1190, "total_steps": 1854, "loss": 0.7314, "accuracy": 0.612500011920929, "learning_rate": 1.42252110930943e-06, "epoch": 1.9236209335219236, "percentage": 64.19, "elapsed_time": "6:05:31", "remaining_time": "3:23:57"} |
|
{"current_steps": 1200, "total_steps": 1854, "loss": 0.8436, "accuracy": 0.512499988079071, "learning_rate": 1.3844496503620493e-06, "epoch": 1.9397858153162255, "percentage": 64.72, "elapsed_time": "6:08:36", "remaining_time": "3:20:53"} |
|
{"current_steps": 1210, "total_steps": 1854, "loss": 0.9006, "accuracy": 0.612500011920929, "learning_rate": 1.3466985275416081e-06, "epoch": 1.9559506971105274, "percentage": 65.26, "elapsed_time": "6:11:40", "remaining_time": "3:17:48"} |
|
{"current_steps": 1220, "total_steps": 1854, "loss": 0.7562, "accuracy": 0.625, "learning_rate": 1.309278581280791e-06, "epoch": 1.9721155789048292, "percentage": 65.8, "elapsed_time": "6:14:32", "remaining_time": "3:14:38"} |
|
{"current_steps": 1230, "total_steps": 1854, "loss": 0.827, "accuracy": 0.5687500238418579, "learning_rate": 1.272200556913199e-06, "epoch": 1.9882804606991311, "percentage": 66.34, "elapsed_time": "6:17:32", "remaining_time": "3:11:31"} |
|
{"current_steps": 1240, "total_steps": 1854, "loss": 0.7717, "accuracy": 0.612500011920929, "learning_rate": 1.2354751015877698e-06, "epoch": 2.004445342493433, "percentage": 66.88, "elapsed_time": "6:20:24", "remaining_time": "3:08:21"} |
|
{"current_steps": 1250, "total_steps": 1854, "loss": 0.8062, "accuracy": 0.59375, "learning_rate": 1.1991127612113945e-06, "epoch": 2.020610224287735, "percentage": 67.42, "elapsed_time": "6:23:22", "remaining_time": "3:05:14"} |
|
{"current_steps": 1260, "total_steps": 1854, "loss": 0.7998, "accuracy": 0.550000011920929, "learning_rate": 1.1631239774206035e-06, "epoch": 2.036775106082037, "percentage": 67.96, "elapsed_time": "6:26:13", "remaining_time": "3:02:04"} |
|
{"current_steps": 1270, "total_steps": 1854, "loss": 0.7462, "accuracy": 0.65625, "learning_rate": 1.1275190845831978e-06, "epoch": 2.052939987876339, "percentage": 68.5, "elapsed_time": "6:29:19", "remaining_time": "2:59:01"} |
|
{"current_steps": 1280, "total_steps": 1854, "loss": 0.7958, "accuracy": 0.6312500238418579, "learning_rate": 1.0923083068306778e-06, "epoch": 2.0691048696706407, "percentage": 69.04, "elapsed_time": "6:32:22", "remaining_time": "2:55:57"} |
|
{"current_steps": 1290, "total_steps": 1854, "loss": 0.7477, "accuracy": 0.581250011920929, "learning_rate": 1.0575017551223348e-06, "epoch": 2.0852697514649425, "percentage": 69.58, "elapsed_time": "6:35:10", "remaining_time": "2:52:46"} |
|
{"current_steps": 1300, "total_steps": 1854, "loss": 0.8002, "accuracy": 0.6187499761581421, "learning_rate": 1.023109424341833e-06, "epoch": 2.1014346332592444, "percentage": 70.12, "elapsed_time": "6:38:09", "remaining_time": "2:49:40"} |
|
{"current_steps": 1310, "total_steps": 1854, "loss": 0.7877, "accuracy": 0.6000000238418579, "learning_rate": 9.891411904271273e-07, "epoch": 2.1175995150535463, "percentage": 70.66, "elapsed_time": "6:41:07", "remaining_time": "2:46:34"} |
|
{"current_steps": 1320, "total_steps": 1854, "loss": 0.8047, "accuracy": 0.6000000238418579, "learning_rate": 9.556068075345363e-07, "epoch": 2.133764396847848, "percentage": 71.2, "elapsed_time": "6:44:02", "remaining_time": "2:43:27"} |
|
{"current_steps": 1330, "total_steps": 1854, "loss": 0.8227, "accuracy": 0.581250011920929, "learning_rate": 9.225159052377838e-07, "epoch": 2.14992927864215, "percentage": 71.74, "elapsed_time": "6:47:03", "remaining_time": "2:40:22"} |
|
{"current_steps": 1340, "total_steps": 1854, "loss": 0.7265, "accuracy": 0.581250011920929, "learning_rate": 8.898779857628184e-07, "epoch": 2.166094160436452, "percentage": 72.28, "elapsed_time": "6:49:58", "remaining_time": "2:37:15"} |
|
{"current_steps": 1350, "total_steps": 1854, "loss": 0.8458, "accuracy": 0.6000000238418579, "learning_rate": 8.577024212591975e-07, "epoch": 2.1822590422307537, "percentage": 72.82, "elapsed_time": "6:52:55", "remaining_time": "2:34:09"} |
|
{"current_steps": 1360, "total_steps": 1854, "loss": 0.8321, "accuracy": 0.5874999761581421, "learning_rate": 8.259984511088276e-07, "epoch": 2.1984239240250556, "percentage": 73.35, "elapsed_time": "6:55:52", "remaining_time": "2:31:03"} |
|
{"current_steps": 1370, "total_steps": 1854, "loss": 0.7973, "accuracy": 0.6000000238418579, "learning_rate": 7.947751792728237e-07, "epoch": 2.2145888058193575, "percentage": 73.89, "elapsed_time": "6:58:44", "remaining_time": "2:27:55"} |
|
{"current_steps": 1380, "total_steps": 1854, "loss": 0.7991, "accuracy": 0.6499999761581421, "learning_rate": 7.640415716772626e-07, "epoch": 2.2307536876136593, "percentage": 74.43, "elapsed_time": "7:01:51", "remaining_time": "2:24:54"} |
|
{"current_steps": 1390, "total_steps": 1854, "loss": 0.7805, "accuracy": 0.6187499761581421, "learning_rate": 7.338064536385722e-07, "epoch": 2.246918569407961, "percentage": 74.97, "elapsed_time": "7:04:56", "remaining_time": "2:21:50"} |
|
{"current_steps": 1400, "total_steps": 1854, "loss": 0.8702, "accuracy": 0.5625, "learning_rate": 7.040785073292883e-07, "epoch": 2.263083451202263, "percentage": 75.51, "elapsed_time": "7:07:52", "remaining_time": "2:18:45"} |
|
{"current_steps": 1410, "total_steps": 1854, "loss": 0.747, "accuracy": 0.6499999761581421, "learning_rate": 6.748662692849297e-07, "epoch": 2.279248332996565, "percentage": 76.05, "elapsed_time": "7:10:44", "remaining_time": "2:15:38"} |
|
{"current_steps": 1420, "total_steps": 1854, "loss": 0.7669, "accuracy": 0.6187499761581421, "learning_rate": 6.46178127952686e-07, "epoch": 2.295413214790867, "percentage": 76.59, "elapsed_time": "7:13:39", "remaining_time": "2:12:32"} |
|
{"current_steps": 1430, "total_steps": 1854, "loss": 0.7933, "accuracy": 0.5625, "learning_rate": 6.180223212826289e-07, "epoch": 2.3115780965851687, "percentage": 77.13, "elapsed_time": "7:16:34", "remaining_time": "2:09:26"} |
|
{"current_steps": 1440, "total_steps": 1854, "loss": 0.7844, "accuracy": 0.6312500238418579, "learning_rate": 5.904069343621443e-07, "epoch": 2.3277429783794705, "percentage": 77.67, "elapsed_time": "7:19:39", "remaining_time": "2:06:23"} |
|
{"current_steps": 1450, "total_steps": 1854, "loss": 0.7809, "accuracy": 0.5874999761581421, "learning_rate": 5.633398970942544e-07, "epoch": 2.3439078601737724, "percentage": 78.21, "elapsed_time": "7:22:34", "remaining_time": "2:03:18"} |
|
{"current_steps": 1460, "total_steps": 1854, "loss": 0.7373, "accuracy": 0.574999988079071, "learning_rate": 5.368289819205069e-07, "epoch": 2.3600727419680743, "percentage": 78.75, "elapsed_time": "7:25:22", "remaining_time": "2:00:11"} |
|
{"current_steps": 1470, "total_steps": 1854, "loss": 0.8661, "accuracy": 0.5687500238418579, "learning_rate": 5.108818015890785e-07, "epoch": 2.376237623762376, "percentage": 79.29, "elapsed_time": "7:28:23", "remaining_time": "1:57:07"} |
|
{"current_steps": 1480, "total_steps": 1854, "loss": 0.7594, "accuracy": 0.643750011920929, "learning_rate": 4.855058069687291e-07, "epoch": 2.392402505556678, "percentage": 79.83, "elapsed_time": "7:31:13", "remaining_time": "1:54:01"} |
|
{"current_steps": 1490, "total_steps": 1854, "loss": 0.8511, "accuracy": 0.5687500238418579, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "7:34:24", "remaining_time": "1:51:00"} |
|
{"current_steps": 1500, "total_steps": 1854, "loss": 0.7691, "accuracy": 0.5625, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "7:37:24", "remaining_time": "1:47:56"} |
|
{"current_steps": 1500, "total_steps": 1854, "eval_loss": 0.8434417247772217, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "7:43:36", "remaining_time": "1:49:24"} |
|
|