File size: 42,420 Bytes
231f5d4 c10ec6a ef2828f ec3c136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
{"current_steps": 10, "total_steps": 1770, "loss": 1.1602, "accuracy": 0.518750011920929, "learning_rate": 4.999614014035063e-06, "epoch": 0.01693480101608806, "percentage": 0.56, "elapsed_time": "0:01:38", "remaining_time": "4:49:21"}
{"current_steps": 20, "total_steps": 1770, "loss": 1.1396, "accuracy": 0.65625, "learning_rate": 4.998440543386042e-06, "epoch": 0.03386960203217612, "percentage": 1.13, "elapsed_time": "0:03:13", "remaining_time": "4:42:31"}
{"current_steps": 30, "total_steps": 1770, "loss": 1.1267, "accuracy": 0.5874999761581421, "learning_rate": 4.996479918381253e-06, "epoch": 0.05080440304826418, "percentage": 1.69, "elapsed_time": "0:04:52", "remaining_time": "4:42:44"}
{"current_steps": 40, "total_steps": 1770, "loss": 0.9216, "accuracy": 0.606249988079071, "learning_rate": 4.993732756731818e-06, "epoch": 0.06773920406435224, "percentage": 2.26, "elapsed_time": "0:06:29", "remaining_time": "4:40:51"}
{"current_steps": 50, "total_steps": 1770, "loss": 1.0558, "accuracy": 0.59375, "learning_rate": 4.9901999239537345e-06, "epoch": 0.0846740050804403, "percentage": 2.82, "elapsed_time": "0:07:58", "remaining_time": "4:34:12"}
{"current_steps": 60, "total_steps": 1770, "loss": 1.0023, "accuracy": 0.5874999761581421, "learning_rate": 4.985882533095186e-06, "epoch": 0.10160880609652836, "percentage": 3.39, "elapsed_time": "0:09:30", "remaining_time": "4:30:56"}
{"current_steps": 70, "total_steps": 1770, "loss": 0.9227, "accuracy": 0.675000011920929, "learning_rate": 4.9807819443858705e-06, "epoch": 0.11854360711261643, "percentage": 3.95, "elapsed_time": "0:11:02", "remaining_time": "4:28:01"}
{"current_steps": 80, "total_steps": 1770, "loss": 1.0068, "accuracy": 0.550000011920929, "learning_rate": 4.9748997648084404e-06, "epoch": 0.1354784081287045, "percentage": 4.52, "elapsed_time": "0:12:36", "remaining_time": "4:26:24"}
{"current_steps": 90, "total_steps": 1770, "loss": 0.9334, "accuracy": 0.6312500238418579, "learning_rate": 4.96823784759222e-06, "epoch": 0.15241320914479256, "percentage": 5.08, "elapsed_time": "0:14:11", "remaining_time": "4:24:53"}
{"current_steps": 100, "total_steps": 1770, "loss": 0.9387, "accuracy": 0.53125, "learning_rate": 4.960798291629323e-06, "epoch": 0.1693480101608806, "percentage": 5.65, "elapsed_time": "0:15:48", "remaining_time": "4:23:56"}
{"current_steps": 110, "total_steps": 1770, "loss": 1.0667, "accuracy": 0.5874999761581421, "learning_rate": 4.952583440813383e-06, "epoch": 0.18628281117696868, "percentage": 6.21, "elapsed_time": "0:17:21", "remaining_time": "4:21:55"}
{"current_steps": 120, "total_steps": 1770, "loss": 0.9522, "accuracy": 0.5625, "learning_rate": 4.943595883301086e-06, "epoch": 0.20321761219305673, "percentage": 6.78, "elapsed_time": "0:18:57", "remaining_time": "4:20:41"}
{"current_steps": 130, "total_steps": 1770, "loss": 0.9707, "accuracy": 0.5062500238418579, "learning_rate": 4.933838450696757e-06, "epoch": 0.2201524132091448, "percentage": 7.34, "elapsed_time": "0:20:36", "remaining_time": "4:19:55"}
{"current_steps": 140, "total_steps": 1770, "loss": 0.9973, "accuracy": 0.512499988079071, "learning_rate": 4.923314217160234e-06, "epoch": 0.23708721422523285, "percentage": 7.91, "elapsed_time": "0:22:09", "remaining_time": "4:17:58"}
{"current_steps": 150, "total_steps": 1770, "loss": 0.8869, "accuracy": 0.59375, "learning_rate": 4.9120264984383285e-06, "epoch": 0.2540220152413209, "percentage": 8.47, "elapsed_time": "0:23:48", "remaining_time": "4:17:13"}
{"current_steps": 160, "total_steps": 1770, "loss": 1.0008, "accuracy": 0.5687500238418579, "learning_rate": 4.899978850820176e-06, "epoch": 0.270956816257409, "percentage": 9.04, "elapsed_time": "0:25:32", "remaining_time": "4:17:01"}
{"current_steps": 170, "total_steps": 1770, "loss": 0.8585, "accuracy": 0.612500011920929, "learning_rate": 4.887175070016795e-06, "epoch": 0.28789161727349705, "percentage": 9.6, "elapsed_time": "0:27:07", "remaining_time": "4:15:15"}
{"current_steps": 180, "total_steps": 1770, "loss": 0.9, "accuracy": 0.581250011920929, "learning_rate": 4.873619189965217e-06, "epoch": 0.3048264182895851, "percentage": 10.17, "elapsed_time": "0:28:45", "remaining_time": "4:13:57"}
{"current_steps": 190, "total_steps": 1770, "loss": 0.8867, "accuracy": 0.606249988079071, "learning_rate": 4.859315481557563e-06, "epoch": 0.32176121930567314, "percentage": 10.73, "elapsed_time": "0:30:20", "remaining_time": "4:12:21"}
{"current_steps": 200, "total_steps": 1770, "loss": 0.9247, "accuracy": 0.518750011920929, "learning_rate": 4.84426845129546e-06, "epoch": 0.3386960203217612, "percentage": 11.3, "elapsed_time": "0:31:58", "remaining_time": "4:10:57"}
{"current_steps": 210, "total_steps": 1770, "loss": 0.9215, "accuracy": 0.543749988079071, "learning_rate": 4.828482839870233e-06, "epoch": 0.3556308213378493, "percentage": 11.86, "elapsed_time": "0:33:31", "remaining_time": "4:09:04"}
{"current_steps": 220, "total_steps": 1770, "loss": 0.9377, "accuracy": 0.5249999761581421, "learning_rate": 4.811963620669314e-06, "epoch": 0.37256562235393736, "percentage": 12.43, "elapsed_time": "0:35:08", "remaining_time": "4:07:33"}
{"current_steps": 230, "total_steps": 1770, "loss": 0.9116, "accuracy": 0.574999988079071, "learning_rate": 4.794715998209328e-06, "epoch": 0.3895004233700254, "percentage": 12.99, "elapsed_time": "0:36:45", "remaining_time": "4:06:05"}
{"current_steps": 240, "total_steps": 1770, "loss": 0.9112, "accuracy": 0.637499988079071, "learning_rate": 4.7767454064963724e-06, "epoch": 0.40643522438611346, "percentage": 13.56, "elapsed_time": "0:38:21", "remaining_time": "4:04:29"}
{"current_steps": 250, "total_steps": 1770, "loss": 0.869, "accuracy": 0.5874999761581421, "learning_rate": 4.758057507313987e-06, "epoch": 0.42337002540220153, "percentage": 14.12, "elapsed_time": "0:39:54", "remaining_time": "4:02:37"}
{"current_steps": 260, "total_steps": 1770, "loss": 0.9795, "accuracy": 0.550000011920929, "learning_rate": 4.73865818843936e-06, "epoch": 0.4403048264182896, "percentage": 14.69, "elapsed_time": "0:41:32", "remaining_time": "4:01:12"}
{"current_steps": 270, "total_steps": 1770, "loss": 0.9016, "accuracy": 0.59375, "learning_rate": 4.718553561788339e-06, "epoch": 0.4572396274343776, "percentage": 15.25, "elapsed_time": "0:43:08", "remaining_time": "3:59:41"}
{"current_steps": 280, "total_steps": 1770, "loss": 0.9531, "accuracy": 0.5062500238418579, "learning_rate": 4.697749961489822e-06, "epoch": 0.4741744284504657, "percentage": 15.82, "elapsed_time": "0:44:44", "remaining_time": "3:58:07"}
{"current_steps": 290, "total_steps": 1770, "loss": 0.8425, "accuracy": 0.6312500238418579, "learning_rate": 4.67625394189013e-06, "epoch": 0.4911092294665538, "percentage": 16.38, "elapsed_time": "0:46:19", "remaining_time": "3:56:26"}
{"current_steps": 300, "total_steps": 1770, "loss": 0.8152, "accuracy": 0.6000000238418579, "learning_rate": 4.654072275488016e-06, "epoch": 0.5080440304826418, "percentage": 16.95, "elapsed_time": "0:47:56", "remaining_time": "3:54:55"}
{"current_steps": 310, "total_steps": 1770, "loss": 0.8855, "accuracy": 0.612500011920929, "learning_rate": 4.631211950800925e-06, "epoch": 0.5249788314987299, "percentage": 17.51, "elapsed_time": "0:49:31", "remaining_time": "3:53:15"}
{"current_steps": 320, "total_steps": 1770, "loss": 0.8686, "accuracy": 0.581250011920929, "learning_rate": 4.6076801701632095e-06, "epoch": 0.541913632514818, "percentage": 18.08, "elapsed_time": "0:51:03", "remaining_time": "3:51:19"}
{"current_steps": 330, "total_steps": 1770, "loss": 0.9136, "accuracy": 0.5874999761581421, "learning_rate": 4.583484347456972e-06, "epoch": 0.558848433530906, "percentage": 18.64, "elapsed_time": "0:52:34", "remaining_time": "3:49:26"}
{"current_steps": 340, "total_steps": 1770, "loss": 0.9349, "accuracy": 0.606249988079071, "learning_rate": 4.55863210577626e-06, "epoch": 0.5757832345469941, "percentage": 19.21, "elapsed_time": "0:54:11", "remaining_time": "3:47:56"}
{"current_steps": 350, "total_steps": 1770, "loss": 0.8441, "accuracy": 0.543749988079071, "learning_rate": 4.5331312750253465e-06, "epoch": 0.5927180355630821, "percentage": 19.77, "elapsed_time": "0:55:49", "remaining_time": "3:46:30"}
{"current_steps": 360, "total_steps": 1770, "loss": 0.9108, "accuracy": 0.5062500238418579, "learning_rate": 4.506989889451858e-06, "epoch": 0.6096528365791702, "percentage": 20.34, "elapsed_time": "0:57:30", "remaining_time": "3:45:13"}
{"current_steps": 370, "total_steps": 1770, "loss": 0.8704, "accuracy": 0.550000011920929, "learning_rate": 4.480216185115512e-06, "epoch": 0.6265876375952583, "percentage": 20.9, "elapsed_time": "0:59:08", "remaining_time": "3:43:45"}
{"current_steps": 380, "total_steps": 1770, "loss": 0.8728, "accuracy": 0.550000011920929, "learning_rate": 4.4528185972932856e-06, "epoch": 0.6435224386113463, "percentage": 21.47, "elapsed_time": "1:00:45", "remaining_time": "3:42:14"}
{"current_steps": 390, "total_steps": 1770, "loss": 0.9297, "accuracy": 0.5062500238418579, "learning_rate": 4.424805757821803e-06, "epoch": 0.6604572396274344, "percentage": 22.03, "elapsed_time": "1:02:23", "remaining_time": "3:40:44"}
{"current_steps": 400, "total_steps": 1770, "loss": 0.8638, "accuracy": 0.612500011920929, "learning_rate": 4.396186492377812e-06, "epoch": 0.6773920406435224, "percentage": 22.6, "elapsed_time": "1:04:01", "remaining_time": "3:39:18"}
{"current_steps": 410, "total_steps": 1770, "loss": 0.8637, "accuracy": 0.5562499761581421, "learning_rate": 4.366969817697578e-06, "epoch": 0.6943268416596104, "percentage": 23.16, "elapsed_time": "1:05:36", "remaining_time": "3:37:36"}
{"current_steps": 420, "total_steps": 1770, "loss": 0.8939, "accuracy": 0.4749999940395355, "learning_rate": 4.337164938736086e-06, "epoch": 0.7112616426756986, "percentage": 23.73, "elapsed_time": "1:07:13", "remaining_time": "3:36:05"}
{"current_steps": 430, "total_steps": 1770, "loss": 0.8569, "accuracy": 0.606249988079071, "learning_rate": 4.306781245766945e-06, "epoch": 0.7281964436917866, "percentage": 24.29, "elapsed_time": "1:08:44", "remaining_time": "3:34:14"}
{"current_steps": 440, "total_steps": 1770, "loss": 0.9611, "accuracy": 0.543749988079071, "learning_rate": 4.275828311423903e-06, "epoch": 0.7451312447078747, "percentage": 24.86, "elapsed_time": "1:10:16", "remaining_time": "3:32:25"}
{"current_steps": 450, "total_steps": 1770, "loss": 0.8277, "accuracy": 0.6187499761581421, "learning_rate": 4.244315887684912e-06, "epoch": 0.7620660457239627, "percentage": 25.42, "elapsed_time": "1:11:55", "remaining_time": "3:30:59"}
{"current_steps": 460, "total_steps": 1770, "loss": 0.8936, "accuracy": 0.59375, "learning_rate": 4.212253902799685e-06, "epoch": 0.7790008467400508, "percentage": 25.99, "elapsed_time": "1:13:32", "remaining_time": "3:29:26"}
{"current_steps": 470, "total_steps": 1770, "loss": 0.9476, "accuracy": 0.518750011920929, "learning_rate": 4.179652458161718e-06, "epoch": 0.7959356477561389, "percentage": 26.55, "elapsed_time": "1:15:06", "remaining_time": "3:27:44"}
{"current_steps": 480, "total_steps": 1770, "loss": 0.9226, "accuracy": 0.5562499761581421, "learning_rate": 4.146521825125765e-06, "epoch": 0.8128704487722269, "percentage": 27.12, "elapsed_time": "1:16:44", "remaining_time": "3:26:15"}
{"current_steps": 490, "total_steps": 1770, "loss": 0.8576, "accuracy": 0.6000000238418579, "learning_rate": 4.11287244177176e-06, "epoch": 0.8298052497883149, "percentage": 27.68, "elapsed_time": "1:18:24", "remaining_time": "3:24:49"}
{"current_steps": 500, "total_steps": 1770, "loss": 0.8758, "accuracy": 0.637499988079071, "learning_rate": 4.078714909616215e-06, "epoch": 0.8467400508044031, "percentage": 28.25, "elapsed_time": "1:20:00", "remaining_time": "3:23:13"}
{"current_steps": 500, "total_steps": 1770, "eval_loss": 0.8691067099571228, "epoch": 0.8467400508044031, "percentage": 28.25, "elapsed_time": "1:23:14", "remaining_time": "3:31:26"}
{"current_steps": 510, "total_steps": 1770, "loss": 0.9067, "accuracy": 0.550000011920929, "learning_rate": 4.044059990272125e-06, "epoch": 0.8636748518204911, "percentage": 28.81, "elapsed_time": "1:24:55", "remaining_time": "3:29:47"}
{"current_steps": 520, "total_steps": 1770, "loss": 0.9597, "accuracy": 0.574999988079071, "learning_rate": 4.0089186020584345e-06, "epoch": 0.8806096528365792, "percentage": 29.38, "elapsed_time": "1:26:31", "remaining_time": "3:28:00"}
{"current_steps": 530, "total_steps": 1770, "loss": 0.871, "accuracy": 0.581250011920929, "learning_rate": 3.973301816560124e-06, "epoch": 0.8975444538526672, "percentage": 29.94, "elapsed_time": "1:28:04", "remaining_time": "3:26:04"}
{"current_steps": 540, "total_steps": 1770, "loss": 0.8891, "accuracy": 0.5249999761581421, "learning_rate": 3.937220855140021e-06, "epoch": 0.9144792548687553, "percentage": 30.51, "elapsed_time": "1:29:38", "remaining_time": "3:24:10"}
{"current_steps": 550, "total_steps": 1770, "loss": 0.8817, "accuracy": 0.4937500059604645, "learning_rate": 3.900687085403418e-06, "epoch": 0.9314140558848434, "percentage": 31.07, "elapsed_time": "1:31:12", "remaining_time": "3:22:18"}
{"current_steps": 560, "total_steps": 1770, "loss": 0.8764, "accuracy": 0.5625, "learning_rate": 3.863712017616614e-06, "epoch": 0.9483488569009314, "percentage": 31.64, "elapsed_time": "1:32:51", "remaining_time": "3:20:39"}
{"current_steps": 570, "total_steps": 1770, "loss": 0.8764, "accuracy": 0.5625, "learning_rate": 3.826307301080504e-06, "epoch": 0.9652836579170194, "percentage": 32.2, "elapsed_time": "1:34:22", "remaining_time": "3:18:41"}
{"current_steps": 580, "total_steps": 1770, "loss": 0.8812, "accuracy": 0.48750001192092896, "learning_rate": 3.7884847204603775e-06, "epoch": 0.9822184589331076, "percentage": 32.77, "elapsed_time": "1:36:03", "remaining_time": "3:17:05"}
{"current_steps": 590, "total_steps": 1770, "loss": 1.0009, "accuracy": 0.5375000238418579, "learning_rate": 3.750256192073058e-06, "epoch": 0.9991532599491956, "percentage": 33.33, "elapsed_time": "1:37:45", "remaining_time": "3:15:30"}
{"current_steps": 600, "total_steps": 1770, "loss": 0.8166, "accuracy": 0.5375000238418579, "learning_rate": 3.7116337601325715e-06, "epoch": 1.0160880609652836, "percentage": 33.9, "elapsed_time": "1:39:22", "remaining_time": "3:13:46"}
{"current_steps": 610, "total_steps": 1770, "loss": 0.8117, "accuracy": 0.53125, "learning_rate": 3.6726295929555154e-06, "epoch": 1.0330228619813717, "percentage": 34.46, "elapsed_time": "1:40:57", "remaining_time": "3:11:58"}
{"current_steps": 620, "total_steps": 1770, "loss": 0.843, "accuracy": 0.59375, "learning_rate": 3.6332559791273307e-06, "epoch": 1.0499576629974599, "percentage": 35.03, "elapsed_time": "1:42:34", "remaining_time": "3:10:14"}
{"current_steps": 630, "total_steps": 1770, "loss": 0.8715, "accuracy": 0.59375, "learning_rate": 3.593525323630681e-06, "epoch": 1.0668924640135478, "percentage": 35.59, "elapsed_time": "1:44:12", "remaining_time": "3:08:34"}
{"current_steps": 640, "total_steps": 1770, "loss": 0.8548, "accuracy": 0.6187499761581421, "learning_rate": 3.5534501439371615e-06, "epoch": 1.083827265029636, "percentage": 36.16, "elapsed_time": "1:45:50", "remaining_time": "3:06:52"}
{"current_steps": 650, "total_steps": 1770, "loss": 0.864, "accuracy": 0.6187499761581421, "learning_rate": 3.5130430660635633e-06, "epoch": 1.100762066045724, "percentage": 36.72, "elapsed_time": "1:47:26", "remaining_time": "3:05:07"}
{"current_steps": 660, "total_steps": 1770, "loss": 0.8483, "accuracy": 0.5375000238418579, "learning_rate": 3.4723168205939444e-06, "epoch": 1.117696867061812, "percentage": 37.29, "elapsed_time": "1:48:57", "remaining_time": "3:03:15"}
{"current_steps": 670, "total_steps": 1770, "loss": 0.9059, "accuracy": 0.5375000238418579, "learning_rate": 3.431284238668754e-06, "epoch": 1.1346316680779, "percentage": 37.85, "elapsed_time": "1:50:32", "remaining_time": "3:01:28"}
{"current_steps": 680, "total_steps": 1770, "loss": 0.9091, "accuracy": 0.5249999761581421, "learning_rate": 3.389958247942274e-06, "epoch": 1.1515664690939882, "percentage": 38.42, "elapsed_time": "1:52:07", "remaining_time": "2:59:44"}
{"current_steps": 690, "total_steps": 1770, "loss": 0.9066, "accuracy": 0.5625, "learning_rate": 3.3483518685096588e-06, "epoch": 1.168501270110076, "percentage": 38.98, "elapsed_time": "1:53:44", "remaining_time": "2:58:01"}
{"current_steps": 700, "total_steps": 1770, "loss": 0.8451, "accuracy": 0.550000011920929, "learning_rate": 3.306478208804839e-06, "epoch": 1.1854360711261642, "percentage": 39.55, "elapsed_time": "1:55:14", "remaining_time": "2:56:09"}
{"current_steps": 710, "total_steps": 1770, "loss": 0.7814, "accuracy": 0.606249988079071, "learning_rate": 3.264350461470608e-06, "epoch": 1.2023708721422524, "percentage": 40.11, "elapsed_time": "1:56:46", "remaining_time": "2:54:20"}
{"current_steps": 720, "total_steps": 1770, "loss": 0.7828, "accuracy": 0.625, "learning_rate": 3.2219818992021685e-06, "epoch": 1.2193056731583405, "percentage": 40.68, "elapsed_time": "1:58:27", "remaining_time": "2:52:44"}
{"current_steps": 730, "total_steps": 1770, "loss": 0.7733, "accuracy": 0.5874999761581421, "learning_rate": 3.1793858705654595e-06, "epoch": 1.2362404741744284, "percentage": 41.24, "elapsed_time": "2:00:05", "remaining_time": "2:51:06"}
{"current_steps": 740, "total_steps": 1770, "loss": 0.8832, "accuracy": 0.4937500059604645, "learning_rate": 3.1365757957915787e-06, "epoch": 1.2531752751905165, "percentage": 41.81, "elapsed_time": "2:01:40", "remaining_time": "2:49:21"}
{"current_steps": 750, "total_steps": 1770, "loss": 0.9282, "accuracy": 0.543749988079071, "learning_rate": 3.093565162548633e-06, "epoch": 1.2701100762066047, "percentage": 42.37, "elapsed_time": "2:03:16", "remaining_time": "2:47:39"}
{"current_steps": 760, "total_steps": 1770, "loss": 0.8093, "accuracy": 0.625, "learning_rate": 3.0503675216923294e-06, "epoch": 1.2870448772226926, "percentage": 42.94, "elapsed_time": "2:04:53", "remaining_time": "2:45:58"}
{"current_steps": 770, "total_steps": 1770, "loss": 0.844, "accuracy": 0.5562499761581421, "learning_rate": 3.0069964829966748e-06, "epoch": 1.3039796782387807, "percentage": 43.5, "elapsed_time": "2:06:32", "remaining_time": "2:44:20"}
{"current_steps": 780, "total_steps": 1770, "loss": 0.8183, "accuracy": 0.6000000238418579, "learning_rate": 2.963465710866094e-06, "epoch": 1.3209144792548688, "percentage": 44.07, "elapsed_time": "2:08:13", "remaining_time": "2:42:45"}
{"current_steps": 790, "total_steps": 1770, "loss": 0.8826, "accuracy": 0.5562499761581421, "learning_rate": 2.919788920030357e-06, "epoch": 1.337849280270957, "percentage": 44.63, "elapsed_time": "2:09:55", "remaining_time": "2:41:10"}
{"current_steps": 800, "total_steps": 1770, "loss": 0.8173, "accuracy": 0.6000000238418579, "learning_rate": 2.8759798712236303e-06, "epoch": 1.3547840812870449, "percentage": 45.2, "elapsed_time": "2:11:34", "remaining_time": "2:39:31"}
{"current_steps": 810, "total_steps": 1770, "loss": 0.8841, "accuracy": 0.5375000238418579, "learning_rate": 2.8320523668490507e-06, "epoch": 1.371718882303133, "percentage": 45.76, "elapsed_time": "2:13:07", "remaining_time": "2:37:47"}
{"current_steps": 820, "total_steps": 1770, "loss": 0.8735, "accuracy": 0.543749988079071, "learning_rate": 2.7880202466301597e-06, "epoch": 1.388653683319221, "percentage": 46.33, "elapsed_time": "2:14:45", "remaining_time": "2:36:07"}
{"current_steps": 830, "total_steps": 1770, "loss": 0.8235, "accuracy": 0.5874999761581421, "learning_rate": 2.7438973832505854e-06, "epoch": 1.405588484335309, "percentage": 46.89, "elapsed_time": "2:16:18", "remaining_time": "2:34:22"}
{"current_steps": 840, "total_steps": 1770, "loss": 0.8831, "accuracy": 0.512499988079071, "learning_rate": 2.699697677983341e-06, "epoch": 1.4225232853513972, "percentage": 47.46, "elapsed_time": "2:17:53", "remaining_time": "2:32:40"}
{"current_steps": 850, "total_steps": 1770, "loss": 0.9054, "accuracy": 0.53125, "learning_rate": 2.6554350563111115e-06, "epoch": 1.4394580863674853, "percentage": 48.02, "elapsed_time": "2:19:30", "remaining_time": "2:31:00"}
{"current_steps": 860, "total_steps": 1770, "loss": 0.7775, "accuracy": 0.5625, "learning_rate": 2.611123463538913e-06, "epoch": 1.4563928873835732, "percentage": 48.59, "elapsed_time": "2:21:08", "remaining_time": "2:29:21"}
{"current_steps": 870, "total_steps": 1770, "loss": 0.898, "accuracy": 0.612500011920929, "learning_rate": 2.566776860400514e-06, "epoch": 1.4733276883996613, "percentage": 49.15, "elapsed_time": "2:22:46", "remaining_time": "2:27:41"}
{"current_steps": 880, "total_steps": 1770, "loss": 0.8512, "accuracy": 0.512499988079071, "learning_rate": 2.522409218659989e-06, "epoch": 1.4902624894157492, "percentage": 49.72, "elapsed_time": "2:24:22", "remaining_time": "2:26:00"}
{"current_steps": 890, "total_steps": 1770, "loss": 0.8459, "accuracy": 0.6499999761581421, "learning_rate": 2.4780345167097976e-06, "epoch": 1.5071972904318374, "percentage": 50.28, "elapsed_time": "2:26:02", "remaining_time": "2:24:24"}
{"current_steps": 900, "total_steps": 1770, "loss": 0.8792, "accuracy": 0.6187499761581421, "learning_rate": 2.4336667351667747e-06, "epoch": 1.5241320914479255, "percentage": 50.85, "elapsed_time": "2:27:36", "remaining_time": "2:22:41"}
{"current_steps": 910, "total_steps": 1770, "loss": 0.8478, "accuracy": 0.5874999761581421, "learning_rate": 2.3893198524674264e-06, "epoch": 1.5410668924640136, "percentage": 51.41, "elapsed_time": "2:29:15", "remaining_time": "2:21:03"}
{"current_steps": 920, "total_steps": 1770, "loss": 0.8759, "accuracy": 0.4937500059604645, "learning_rate": 2.345007840463904e-06, "epoch": 1.5580016934801018, "percentage": 51.98, "elapsed_time": "2:30:57", "remaining_time": "2:19:28"}
{"current_steps": 930, "total_steps": 1770, "loss": 0.8639, "accuracy": 0.5687500238418579, "learning_rate": 2.3007446600220572e-06, "epoch": 1.5749364944961897, "percentage": 52.54, "elapsed_time": "2:32:37", "remaining_time": "2:17:51"}
{"current_steps": 940, "total_steps": 1770, "loss": 0.862, "accuracy": 0.4375, "learning_rate": 2.2565442566229507e-06, "epoch": 1.5918712955122776, "percentage": 53.11, "elapsed_time": "2:34:16", "remaining_time": "2:16:13"}
{"current_steps": 950, "total_steps": 1770, "loss": 0.8399, "accuracy": 0.6499999761581421, "learning_rate": 2.2124205559692195e-06, "epoch": 1.6088060965283657, "percentage": 53.67, "elapsed_time": "2:35:54", "remaining_time": "2:14:34"}
{"current_steps": 960, "total_steps": 1770, "loss": 0.8565, "accuracy": 0.6312500238418579, "learning_rate": 2.168387459597666e-06, "epoch": 1.6257408975444538, "percentage": 54.24, "elapsed_time": "2:37:36", "remaining_time": "2:12:58"}
{"current_steps": 970, "total_steps": 1770, "loss": 0.8408, "accuracy": 0.581250011920929, "learning_rate": 2.1244588404994648e-06, "epoch": 1.642675698560542, "percentage": 54.8, "elapsed_time": "2:39:12", "remaining_time": "2:11:18"}
{"current_steps": 980, "total_steps": 1770, "loss": 0.8786, "accuracy": 0.53125, "learning_rate": 2.08064853874936e-06, "epoch": 1.65961049957663, "percentage": 55.37, "elapsed_time": "2:40:51", "remaining_time": "2:09:40"}
{"current_steps": 990, "total_steps": 1770, "loss": 0.7743, "accuracy": 0.6499999761581421, "learning_rate": 2.0369703571452387e-06, "epoch": 1.676545300592718, "percentage": 55.93, "elapsed_time": "2:42:30", "remaining_time": "2:08:02"}
{"current_steps": 1000, "total_steps": 1770, "loss": 0.8098, "accuracy": 0.5687500238418579, "learning_rate": 1.993438056859441e-06, "epoch": 1.6934801016088061, "percentage": 56.5, "elapsed_time": "2:44:07", "remaining_time": "2:06:22"}
{"current_steps": 1000, "total_steps": 1770, "eval_loss": 0.8548597693443298, "epoch": 1.6934801016088061, "percentage": 56.5, "elapsed_time": "2:47:22", "remaining_time": "2:08:52"}
{"current_steps": 1010, "total_steps": 1770, "loss": 0.8768, "accuracy": 0.581250011920929, "learning_rate": 1.9500653531031917e-06, "epoch": 1.710414902624894, "percentage": 57.06, "elapsed_time": "2:49:03", "remaining_time": "2:07:12"}
{"current_steps": 1020, "total_steps": 1770, "loss": 0.8406, "accuracy": 0.606249988079071, "learning_rate": 1.9068659108055117e-06, "epoch": 1.7273497036409822, "percentage": 57.63, "elapsed_time": "2:50:47", "remaining_time": "2:05:35"}
{"current_steps": 1030, "total_steps": 1770, "loss": 0.7414, "accuracy": 0.6499999761581421, "learning_rate": 1.863853340307962e-06, "epoch": 1.7442845046570703, "percentage": 58.19, "elapsed_time": "2:52:26", "remaining_time": "2:03:53"}
{"current_steps": 1040, "total_steps": 1770, "loss": 0.8196, "accuracy": 0.637499988079071, "learning_rate": 1.8210411930766019e-06, "epoch": 1.7612193056731584, "percentage": 58.76, "elapsed_time": "2:54:04", "remaining_time": "2:02:11"}
{"current_steps": 1050, "total_steps": 1770, "loss": 0.7991, "accuracy": 0.6187499761581421, "learning_rate": 1.7784429574324803e-06, "epoch": 1.7781541066892466, "percentage": 59.32, "elapsed_time": "2:55:43", "remaining_time": "2:00:29"}
{"current_steps": 1060, "total_steps": 1770, "loss": 0.8021, "accuracy": 0.612500011920929, "learning_rate": 1.7360720543020327e-06, "epoch": 1.7950889077053345, "percentage": 59.89, "elapsed_time": "2:57:19", "remaining_time": "1:58:46"}
{"current_steps": 1070, "total_steps": 1770, "loss": 0.8344, "accuracy": 0.606249988079071, "learning_rate": 1.6939418329887042e-06, "epoch": 1.8120237087214224, "percentage": 60.45, "elapsed_time": "2:58:58", "remaining_time": "1:57:05"}
{"current_steps": 1080, "total_steps": 1770, "loss": 0.8499, "accuracy": 0.5, "learning_rate": 1.6520655669671467e-06, "epoch": 1.8289585097375105, "percentage": 61.02, "elapsed_time": "3:00:33", "remaining_time": "1:55:21"}
{"current_steps": 1090, "total_steps": 1770, "loss": 0.8634, "accuracy": 0.5687500238418579, "learning_rate": 1.610456449701294e-06, "epoch": 1.8458933107535986, "percentage": 61.58, "elapsed_time": "3:02:06", "remaining_time": "1:53:36"}
{"current_steps": 1100, "total_steps": 1770, "loss": 0.8794, "accuracy": 0.606249988079071, "learning_rate": 1.5691275904876545e-06, "epoch": 1.8628281117696868, "percentage": 62.15, "elapsed_time": "3:03:39", "remaining_time": "1:51:51"}
{"current_steps": 1110, "total_steps": 1770, "loss": 0.8213, "accuracy": 0.543749988079071, "learning_rate": 1.5280920103251235e-06, "epoch": 1.879762912785775, "percentage": 62.71, "elapsed_time": "3:05:14", "remaining_time": "1:50:08"}
{"current_steps": 1120, "total_steps": 1770, "loss": 0.8642, "accuracy": 0.625, "learning_rate": 1.4873626378126015e-06, "epoch": 1.8966977138018628, "percentage": 63.28, "elapsed_time": "3:06:49", "remaining_time": "1:48:25"}
{"current_steps": 1130, "total_steps": 1770, "loss": 0.8402, "accuracy": 0.550000011920929, "learning_rate": 1.446952305075738e-06, "epoch": 1.913632514817951, "percentage": 63.84, "elapsed_time": "3:08:23", "remaining_time": "1:46:41"}
{"current_steps": 1140, "total_steps": 1770, "loss": 0.8842, "accuracy": 0.59375, "learning_rate": 1.406873743724065e-06, "epoch": 1.9305673158340388, "percentage": 64.41, "elapsed_time": "3:10:00", "remaining_time": "1:45:00"}
{"current_steps": 1150, "total_steps": 1770, "loss": 0.8142, "accuracy": 0.5687500238418579, "learning_rate": 1.3671395808397898e-06, "epoch": 1.947502116850127, "percentage": 64.97, "elapsed_time": "3:11:41", "remaining_time": "1:43:21"}
{"current_steps": 1160, "total_steps": 1770, "loss": 0.8381, "accuracy": 0.550000011920929, "learning_rate": 1.3277623349995418e-06, "epoch": 1.964436917866215, "percentage": 65.54, "elapsed_time": "3:13:12", "remaining_time": "1:41:35"}
{"current_steps": 1170, "total_steps": 1770, "loss": 0.863, "accuracy": 0.5375000238418579, "learning_rate": 1.2887544123302781e-06, "epoch": 1.9813717188823032, "percentage": 66.1, "elapsed_time": "3:14:44", "remaining_time": "1:39:52"}
{"current_steps": 1180, "total_steps": 1770, "loss": 0.8289, "accuracy": 0.518750011920929, "learning_rate": 1.2501281026006393e-06, "epoch": 1.9983065198983911, "percentage": 66.67, "elapsed_time": "3:16:14", "remaining_time": "1:38:07"}
{"current_steps": 1190, "total_steps": 1770, "loss": 0.8514, "accuracy": 0.550000011920929, "learning_rate": 1.2118955753489523e-06, "epoch": 2.015241320914479, "percentage": 67.23, "elapsed_time": "3:17:51", "remaining_time": "1:36:26"}
{"current_steps": 1200, "total_steps": 1770, "loss": 0.8299, "accuracy": 0.6312500238418579, "learning_rate": 1.1740688760491189e-06, "epoch": 2.032176121930567, "percentage": 67.8, "elapsed_time": "3:19:27", "remaining_time": "1:34:44"}
{"current_steps": 1210, "total_steps": 1770, "loss": 0.8056, "accuracy": 0.59375, "learning_rate": 1.1366599223155847e-06, "epoch": 2.0491109229466553, "percentage": 68.36, "elapsed_time": "3:21:03", "remaining_time": "1:33:02"}
{"current_steps": 1220, "total_steps": 1770, "loss": 0.8161, "accuracy": 0.59375, "learning_rate": 1.0996805001486067e-06, "epoch": 2.0660457239627434, "percentage": 68.93, "elapsed_time": "3:22:39", "remaining_time": "1:31:21"}
{"current_steps": 1230, "total_steps": 1770, "loss": 0.8569, "accuracy": 0.5375000238418579, "learning_rate": 1.0631422602209608e-06, "epoch": 2.0829805249788316, "percentage": 69.49, "elapsed_time": "3:24:17", "remaining_time": "1:29:41"}
{"current_steps": 1240, "total_steps": 1770, "loss": 0.8939, "accuracy": 0.5375000238418579, "learning_rate": 1.027056714207319e-06, "epoch": 2.0999153259949197, "percentage": 70.06, "elapsed_time": "3:26:00", "remaining_time": "1:28:03"}
{"current_steps": 1250, "total_steps": 1770, "loss": 0.7394, "accuracy": 0.6000000238418579, "learning_rate": 9.914352311573838e-07, "epoch": 2.116850127011008, "percentage": 70.62, "elapsed_time": "3:27:35", "remaining_time": "1:26:21"}
{"current_steps": 1260, "total_steps": 1770, "loss": 0.8032, "accuracy": 0.59375, "learning_rate": 9.562890339139877e-07, "epoch": 2.1337849280270955, "percentage": 71.19, "elapsed_time": "3:29:09", "remaining_time": "1:24:39"}
{"current_steps": 1270, "total_steps": 1770, "loss": 0.8238, "accuracy": 0.6000000238418579, "learning_rate": 9.216291955772374e-07, "epoch": 2.1507197290431836, "percentage": 71.75, "elapsed_time": "3:30:41", "remaining_time": "1:22:56"}
{"current_steps": 1280, "total_steps": 1770, "loss": 0.774, "accuracy": 0.550000011920929, "learning_rate": 8.874666360158457e-07, "epoch": 2.167654530059272, "percentage": 72.32, "elapsed_time": "3:32:21", "remaining_time": "1:21:17"}
{"current_steps": 1290, "total_steps": 1770, "loss": 0.7277, "accuracy": 0.581250011920929, "learning_rate": 8.538121184267315e-07, "epoch": 2.18458933107536, "percentage": 72.88, "elapsed_time": "3:33:53", "remaining_time": "1:19:35"}
{"current_steps": 1300, "total_steps": 1770, "loss": 0.8604, "accuracy": 0.5562499761581421, "learning_rate": 8.206762459439907e-07, "epoch": 2.201524132091448, "percentage": 73.45, "elapsed_time": "3:35:27", "remaining_time": "1:17:53"}
{"current_steps": 1310, "total_steps": 1770, "loss": 0.8926, "accuracy": 0.606249988079071, "learning_rate": 7.880694582982898e-07, "epoch": 2.218458933107536, "percentage": 74.01, "elapsed_time": "3:37:04", "remaining_time": "1:16:13"}
{"current_steps": 1320, "total_steps": 1770, "loss": 0.8363, "accuracy": 0.53125, "learning_rate": 7.560020285277401e-07, "epoch": 2.235393734123624, "percentage": 74.58, "elapsed_time": "3:38:37", "remaining_time": "1:14:31"}
{"current_steps": 1330, "total_steps": 1770, "loss": 0.8534, "accuracy": 0.53125, "learning_rate": 7.244840597412956e-07, "epoch": 2.252328535139712, "percentage": 75.14, "elapsed_time": "3:40:13", "remaining_time": "1:12:51"}
{"current_steps": 1340, "total_steps": 1770, "loss": 0.8464, "accuracy": 0.5625, "learning_rate": 6.935254819356796e-07, "epoch": 2.2692633361558, "percentage": 75.71, "elapsed_time": "3:41:48", "remaining_time": "1:11:10"}
{"current_steps": 1350, "total_steps": 1770, "loss": 0.7824, "accuracy": 0.6187499761581421, "learning_rate": 6.631360488668662e-07, "epoch": 2.2861981371718882, "percentage": 76.27, "elapsed_time": "3:43:23", "remaining_time": "1:09:29"}
{"current_steps": 1360, "total_steps": 1770, "loss": 0.8656, "accuracy": 0.581250011920929, "learning_rate": 6.333253349770672e-07, "epoch": 2.3031329381879764, "percentage": 76.84, "elapsed_time": "3:44:57", "remaining_time": "1:07:49"}
{"current_steps": 1370, "total_steps": 1770, "loss": 0.7993, "accuracy": 0.606249988079071, "learning_rate": 6.041027323782364e-07, "epoch": 2.3200677392040645, "percentage": 77.4, "elapsed_time": "3:46:34", "remaining_time": "1:06:09"}
{"current_steps": 1380, "total_steps": 1770, "loss": 0.81, "accuracy": 0.6312500238418579, "learning_rate": 5.754774478929969e-07, "epoch": 2.337002540220152, "percentage": 77.97, "elapsed_time": "3:48:13", "remaining_time": "1:04:30"}
{"current_steps": 1390, "total_steps": 1770, "loss": 0.7742, "accuracy": 0.65625, "learning_rate": 5.474585001539634e-07, "epoch": 2.3539373412362403, "percentage": 78.53, "elapsed_time": "3:49:47", "remaining_time": "1:02:49"}
{"current_steps": 1400, "total_steps": 1770, "loss": 0.8399, "accuracy": 0.5687500238418579, "learning_rate": 5.200547167623424e-07, "epoch": 2.3708721422523285, "percentage": 79.1, "elapsed_time": "3:51:23", "remaining_time": "1:01:09"}
{"current_steps": 1410, "total_steps": 1770, "loss": 0.8193, "accuracy": 0.6312500238418579, "learning_rate": 4.932747315067271e-07, "epoch": 2.3878069432684166, "percentage": 79.66, "elapsed_time": "3:53:02", "remaining_time": "0:59:29"}
{"current_steps": 1420, "total_steps": 1770, "loss": 0.8029, "accuracy": 0.6499999761581421, "learning_rate": 4.6712698164294553e-07, "epoch": 2.4047417442845047, "percentage": 80.23, "elapsed_time": "3:54:41", "remaining_time": "0:57:50"}
{"current_steps": 1430, "total_steps": 1770, "loss": 0.8124, "accuracy": 0.6187499761581421, "learning_rate": 4.41619705235842e-07, "epoch": 2.421676545300593, "percentage": 80.79, "elapsed_time": "3:56:20", "remaining_time": "0:56:11"}
{"current_steps": 1440, "total_steps": 1770, "loss": 0.8596, "accuracy": 0.612500011920929, "learning_rate": 4.167609385637961e-07, "epoch": 2.438611346316681, "percentage": 81.36, "elapsed_time": "3:57:56", "remaining_time": "0:54:31"}
{"current_steps": 1450, "total_steps": 1770, "loss": 0.817, "accuracy": 0.518750011920929, "learning_rate": 3.9255851358683567e-07, "epoch": 2.4555461473327687, "percentage": 81.92, "elapsed_time": "3:59:34", "remaining_time": "0:52:52"}
{"current_steps": 1460, "total_steps": 1770, "loss": 0.8001, "accuracy": 0.637499988079071, "learning_rate": 3.690200554791082e-07, "epoch": 2.472480948348857, "percentage": 82.49, "elapsed_time": "4:01:08", "remaining_time": "0:51:12"}
{"current_steps": 1470, "total_steps": 1770, "loss": 0.8201, "accuracy": 0.625, "learning_rate": 3.461529802265079e-07, "epoch": 2.489415749364945, "percentage": 83.05, "elapsed_time": "4:02:45", "remaining_time": "0:49:32"}
{"current_steps": 1480, "total_steps": 1770, "loss": 0.8599, "accuracy": 0.5375000238418579, "learning_rate": 3.2396449229020883e-07, "epoch": 2.506350550381033, "percentage": 83.62, "elapsed_time": "4:04:21", "remaining_time": "0:47:52"}
{"current_steps": 1490, "total_steps": 1770, "loss": 0.8252, "accuracy": 0.574999988079071, "learning_rate": 3.024615823368371e-07, "epoch": 2.523285351397121, "percentage": 84.18, "elapsed_time": "4:05:47", "remaining_time": "0:46:11"}
{"current_steps": 1500, "total_steps": 1770, "loss": 0.8135, "accuracy": 0.581250011920929, "learning_rate": 2.8165102503600716e-07, "epoch": 2.5402201524132093, "percentage": 84.75, "elapsed_time": "4:07:23", "remaining_time": "0:44:31"}
{"current_steps": 1500, "total_steps": 1770, "eval_loss": 0.8505691885948181, "epoch": 2.5402201524132093, "percentage": 84.75, "elapsed_time": "4:10:38", "remaining_time": "0:45:06"}
{"current_steps": 1510, "total_steps": 1770, "loss": 0.9194, "accuracy": 0.4625000059604645, "learning_rate": 2.615393769259039e-07, "epoch": 2.557154953429297, "percentage": 85.31, "elapsed_time": "4:12:19", "remaining_time": "0:43:26"}
{"current_steps": 1520, "total_steps": 1770, "loss": 0.7981, "accuracy": 0.5874999761581421, "learning_rate": 2.421329743475917e-07, "epoch": 2.574089754445385, "percentage": 85.88, "elapsed_time": "4:13:52", "remaining_time": "0:41:45"}
{"current_steps": 1530, "total_steps": 1770, "loss": 0.8756, "accuracy": 0.550000011920929, "learning_rate": 2.234379314486973e-07, "epoch": 2.5910245554614733, "percentage": 86.44, "elapsed_time": "4:15:31", "remaining_time": "0:40:04"}
{"current_steps": 1540, "total_steps": 1770, "loss": 0.8149, "accuracy": 0.6499999761581421, "learning_rate": 2.0546013825709783e-07, "epoch": 2.6079593564775614, "percentage": 87.01, "elapsed_time": "4:17:09", "remaining_time": "0:38:24"}
{"current_steps": 1550, "total_steps": 1770, "loss": 0.7295, "accuracy": 0.637499988079071, "learning_rate": 1.88205258825217e-07, "epoch": 2.6248941574936495, "percentage": 87.57, "elapsed_time": "4:18:49", "remaining_time": "0:36:44"}
{"current_steps": 1560, "total_steps": 1770, "loss": 0.7572, "accuracy": 0.612500011920929, "learning_rate": 1.7167872944552245e-07, "epoch": 2.6418289585097376, "percentage": 88.14, "elapsed_time": "4:20:24", "remaining_time": "0:35:03"}
{"current_steps": 1570, "total_steps": 1770, "loss": 0.8135, "accuracy": 0.5062500238418579, "learning_rate": 1.5588575693777142e-07, "epoch": 2.6587637595258258, "percentage": 88.7, "elapsed_time": "4:22:02", "remaining_time": "0:33:22"}
{"current_steps": 1580, "total_steps": 1770, "loss": 0.8605, "accuracy": 0.5249999761581421, "learning_rate": 1.4083131700856428e-07, "epoch": 2.675698560541914, "percentage": 89.27, "elapsed_time": "4:23:40", "remaining_time": "0:31:42"}
{"current_steps": 1590, "total_steps": 1770, "loss": 0.8044, "accuracy": 0.612500011920929, "learning_rate": 1.2652015268370315e-07, "epoch": 2.6926333615580016, "percentage": 89.83, "elapsed_time": "4:25:16", "remaining_time": "0:30:01"}
{"current_steps": 1600, "total_steps": 1770, "loss": 0.8914, "accuracy": 0.550000011920929, "learning_rate": 1.1295677281386502e-07, "epoch": 2.7095681625740897, "percentage": 90.4, "elapsed_time": "4:26:55", "remaining_time": "0:28:21"}
{"current_steps": 1610, "total_steps": 1770, "loss": 0.8777, "accuracy": 0.550000011920929, "learning_rate": 1.0014545065404973e-07, "epoch": 2.726502963590178, "percentage": 90.96, "elapsed_time": "4:28:32", "remaining_time": "0:26:41"}
{"current_steps": 1620, "total_steps": 1770, "loss": 0.8348, "accuracy": 0.550000011920929, "learning_rate": 8.809022251725502e-08, "epoch": 2.743437764606266, "percentage": 91.53, "elapsed_time": "4:30:10", "remaining_time": "0:25:00"}
{"current_steps": 1630, "total_steps": 1770, "loss": 0.8429, "accuracy": 0.574999988079071, "learning_rate": 7.679488650280509e-08, "epoch": 2.7603725656223537, "percentage": 92.09, "elapsed_time": "4:31:48", "remaining_time": "0:23:20"}
{"current_steps": 1640, "total_steps": 1770, "loss": 0.792, "accuracy": 0.5562499761581421, "learning_rate": 6.626300129972563e-08, "epoch": 2.777307366638442, "percentage": 92.66, "elapsed_time": "4:33:19", "remaining_time": "0:21:39"}
{"current_steps": 1650, "total_steps": 1770, "loss": 0.797, "accuracy": 0.643750011920929, "learning_rate": 5.649788506555065e-08, "epoch": 2.79424216765453, "percentage": 93.22, "elapsed_time": "4:34:54", "remaining_time": "0:19:59"}
{"current_steps": 1660, "total_steps": 1770, "loss": 0.8333, "accuracy": 0.5687500238418579, "learning_rate": 4.7502614380908474e-08, "epoch": 2.811176968670618, "percentage": 93.79, "elapsed_time": "4:36:31", "remaining_time": "0:18:19"}
{"current_steps": 1670, "total_steps": 1770, "loss": 0.8222, "accuracy": 0.581250011920929, "learning_rate": 3.9280023280222066e-08, "epoch": 2.828111769686706, "percentage": 94.35, "elapsed_time": "4:38:07", "remaining_time": "0:16:39"}
{"current_steps": 1680, "total_steps": 1770, "loss": 0.8739, "accuracy": 0.5874999761581421, "learning_rate": 3.1832702358818855e-08, "epoch": 2.8450465707027943, "percentage": 94.92, "elapsed_time": "4:39:50", "remaining_time": "0:14:59"}
{"current_steps": 1690, "total_steps": 1770, "loss": 0.8076, "accuracy": 0.574999988079071, "learning_rate": 2.5162997956746647e-08, "epoch": 2.8619813717188824, "percentage": 95.48, "elapsed_time": "4:41:32", "remaining_time": "0:13:19"}
{"current_steps": 1700, "total_steps": 1770, "loss": 0.8378, "accuracy": 0.581250011920929, "learning_rate": 1.9273011419536914e-08, "epoch": 2.8789161727349706, "percentage": 96.05, "elapsed_time": "4:43:01", "remaining_time": "0:11:39"}
{"current_steps": 1710, "total_steps": 1770, "loss": 0.82, "accuracy": 0.581250011920929, "learning_rate": 1.4164598436159083e-08, "epoch": 2.8958509737510583, "percentage": 96.61, "elapsed_time": "4:44:34", "remaining_time": "0:09:59"}
{"current_steps": 1720, "total_steps": 1770, "loss": 0.8046, "accuracy": 0.59375, "learning_rate": 9.839368454371556e-09, "epoch": 2.9127857747671464, "percentage": 97.18, "elapsed_time": "4:46:12", "remaining_time": "0:08:19"}
{"current_steps": 1730, "total_steps": 1770, "loss": 0.7977, "accuracy": 0.6187499761581421, "learning_rate": 6.298684173650649e-09, "epoch": 2.9297205757832345, "percentage": 97.74, "elapsed_time": "4:47:46", "remaining_time": "0:06:39"}
{"current_steps": 1740, "total_steps": 1770, "loss": 0.8552, "accuracy": 0.6000000238418579, "learning_rate": 3.543661115860686e-09, "epoch": 2.9466553767993227, "percentage": 98.31, "elapsed_time": "4:49:16", "remaining_time": "0:04:59"}
{"current_steps": 1750, "total_steps": 1770, "loss": 0.7914, "accuracy": 0.574999988079071, "learning_rate": 1.575167273800693e-09, "epoch": 2.963590177815411, "percentage": 98.87, "elapsed_time": "4:50:45", "remaining_time": "0:03:19"}
{"current_steps": 1760, "total_steps": 1770, "loss": 0.8971, "accuracy": 0.574999988079071, "learning_rate": 3.9382283773564676e-10, "epoch": 2.9805249788314985, "percentage": 99.44, "elapsed_time": "4:52:24", "remaining_time": "0:01:39"}
{"current_steps": 1770, "total_steps": 1770, "loss": 0.9206, "accuracy": 0.6187499761581421, "learning_rate": 0.0, "epoch": 2.9974597798475866, "percentage": 100.0, "elapsed_time": "4:53:57", "remaining_time": "0:00:00"}
{"current_steps": 1770, "total_steps": 1770, "epoch": 2.9974597798475866, "percentage": 100.0, "elapsed_time": "4:53:58", "remaining_time": "0:00:00"}
|