# Stanford Alpaca This is a replica of Alpaca by Stanford' tatsu Trained using the original instructions with a minor modification in FSDP mode # Other versions: 13B: https://huggingface.co./chavinlo/alpaca-13b 13B -> GPT4 : https://huggingface.co./chavinlo/gpt4-x-alpaca ## Compute Used Trained on 4xA100s for 6H Donated by redmond.ai NO LORA HAS BEEN USED, this is a natively-finetuned model, hence "alpaca-native" If you are interested on more llama-based models, you can check out my profile or search for other models at https://huggingface.co./models?other=llama This (MIGHT) be a quantized version of this model, but be careful: https://boards.4channel.org/g/thread/92173062#p92182396 CONFIGURATION (default except fsdp): ```shell torchrun --nproc_per_node=4 --master_port=3045 train.py \ --model_name_or_path /workspace/llama-7b-hf \ --data_path ./alpaca_data.json \ --bf16 True \ --output_dir /workspace/output \ --num_train_epochs 3 \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 8 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 200 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --fsdp "shard_grad_op auto_wrap" \ --fsdp_transformer_layer_cls_to_wrap 'LLaMADecoderLayer' \ --tf32 True --report_to="wandb" ```