Text Generation
Transformers
Safetensors
English
llama
mergekit
Merge
conversational
text-generation-inference
Inference Endpoints
File size: 4,871 Bytes
f1f21e3
daf9d3d
 
 
f1f21e3
 
 
 
daf9d3d
 
 
cd740c0
 
 
daf9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f21e3
cd740c0
f1f21e3
cd740c0
f1f21e3
cd740c0
f1f21e3
cd740c0
 
 
 
 
 
f1f21e3
 
cd740c0
f1f21e3
90a728a
cd740c0
f1f21e3
 
cd740c0
 
 
 
 
 
 
 
 
f1f21e3
cd740c0
 
 
 
 
 
 
 
 
daf9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- chargoddard/prometheus-llama-3-8b-preference
- chargoddard/prometheus-llama-3-8b-absolute
datasets:
- prometheus-eval/Preference-Collection
- prometheus-eval/Feedback-Collection
model-index:
- name: prometheus-2-llama-3-8b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 52.89
      name: strict accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 27.8
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 7.25
      name: exact match
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.02
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.78
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 23.19
      name: accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=chargoddard/prometheus-2-llama-3-8b
      name: Open LLM Leaderboard
---
# prometheus-2-llama-3-8b

Replication of [prometheus-7b-v2.0](https://huggingface.co./prometheus-eval/prometheus-7b-v2.0) using [Llama 3 8B Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct) as a base model.

As in their paper, two different models were trained on their preference and feedback datasets then linearly merged at equal weight.

Training hyperparameters:
* 1 epoch
* Learning rate 1e-5
* Effective batch size 128
* Cosine annealing
* ~5% warmup


Uses Llama 3 Instruct prompt format and the same prompts as prometheus-7b-v2.0. See that readme for info.


# Citations


```bibtex
@misc{kim2023prometheus,
    title={Prometheus: Inducing Fine-grained Evaluation Capability in Language Models},
    author={Seungone Kim and Jamin Shin and Yejin Cho and Joel Jang and Shayne Longpre and Hwaran Lee and Sangdoo Yun and Seongjin Shin and Sungdong Kim and James Thorne and Minjoon Seo},
    year={2023},
    eprint={2310.08491},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```
```bibtex
@misc{kim2024prometheus,
    title={Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models},
    author={Seungone Kim and Juyoung Suk and Shayne Longpre and Bill Yuchen Lin and Jamin Shin and Sean Welleck and Graham Neubig and Moontae Lee and Kyungjae Lee and Minjoon Seo},
    year={2024},
    eprint={2405.01535},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_chargoddard__prometheus-2-llama-3-8b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |19.16|
|IFEval (0-Shot)    |52.89|
|BBH (3-Shot)       |27.80|
|MATH Lvl 5 (4-Shot)| 7.25|
|GPQA (0-shot)      | 3.02|
|MuSR (0-shot)      | 0.78|
|MMLU-PRO (5-shot)  |23.19|