File size: 2,058 Bytes
ed79e38 22ab29c ed79e38 22ab29c ed79e38 22ab29c ed79e38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: gemma
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: google/gemma-7b
datasets:
- chansung/no_robots_only_coding
model-index:
- name: gemma-7b-sft-qlora-no-robots2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-7b-sft-qlora-no-robots2
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the chansung/no_robots_only_coding dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3843
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 20.4692 | 0.91 | 5 | 7.4399 |
| 12.9912 | 2.0 | 11 | 6.6074 |
| 10.1734 | 2.91 | 16 | 6.0225 |
| 9.8269 | 4.0 | 22 | 3.5503 |
| 5.2353 | 4.91 | 27 | 1.6505 |
| 1.6367 | 6.0 | 33 | 1.4912 |
| 1.4714 | 6.91 | 38 | 1.4201 |
| 1.3916 | 8.0 | 44 | 1.3933 |
| 1.2832 | 8.91 | 49 | 1.3882 |
| 1.2863 | 9.09 | 50 | 1.3843 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |