--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.625 --- # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2826 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.071 | 1.0 | 10 | 2.0532 | 0.2125 | | 1.9763 | 2.0 | 20 | 1.9614 | 0.3312 | | 1.8031 | 3.0 | 30 | 1.8326 | 0.4562 | | 1.6168 | 4.0 | 40 | 1.7015 | 0.5125 | | 1.4508 | 5.0 | 50 | 1.6065 | 0.5188 | | 1.3037 | 6.0 | 60 | 1.5397 | 0.5375 | | 1.1709 | 7.0 | 70 | 1.4836 | 0.55 | | 1.0481 | 8.0 | 80 | 1.4248 | 0.5813 | | 0.9441 | 9.0 | 90 | 1.3915 | 0.5625 | | 0.8551 | 10.0 | 100 | 1.3586 | 0.6 | | 0.7772 | 11.0 | 110 | 1.3315 | 0.6 | | 0.7174 | 12.0 | 120 | 1.3057 | 0.6062 | | 0.6721 | 13.0 | 130 | 1.2936 | 0.6188 | | 0.642 | 14.0 | 140 | 1.2933 | 0.6 | | 0.6252 | 15.0 | 150 | 1.2826 | 0.625 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1