--- language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Cantonese - Daniel Chan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: zh-HK split: None args: 'config: Cantonese, split: test' metrics: - name: Wer type: wer value: 55.88601959038291 --- # Whisper Small Cantonese - Daniel Chan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2611 - Wer: 55.8860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2222 | 1.14 | 1000 | 0.2847 | 63.1879 | | 0.1146 | 2.28 | 2000 | 0.2592 | 58.2725 | | 0.0382 | 3.42 | 3000 | 0.2575 | 55.9216 | | 0.024 | 4.57 | 4000 | 0.2611 | 55.8860 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2