--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2228 - Precision: 0.8030 - Recall: 0.8093 - F1: 0.8061 - Accuracy: 0.9545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3032 | 1.0 | 878 | 0.3241 | 0.6979 | 0.5912 | 0.6401 | 0.9168 | | 0.2666 | 2.0 | 1756 | 0.2822 | 0.6475 | 0.6577 | 0.6525 | 0.9221 | | 0.2025 | 3.0 | 2634 | 0.2402 | 0.7021 | 0.7273 | 0.7144 | 0.9369 | | 0.1421 | 4.0 | 3512 | 0.2158 | 0.7283 | 0.7331 | 0.7307 | 0.9390 | | 0.111 | 5.0 | 4390 | 0.2189 | 0.7442 | 0.7395 | 0.7418 | 0.9417 | | 0.0813 | 6.0 | 5268 | 0.2196 | 0.7307 | 0.7812 | 0.7551 | 0.9442 | | 0.0538 | 7.0 | 6146 | 0.2169 | 0.7594 | 0.8049 | 0.7815 | 0.9497 | | 0.0389 | 8.0 | 7024 | 0.2133 | 0.7929 | 0.7991 | 0.7960 | 0.9520 | | 0.0263 | 9.0 | 7902 | 0.2192 | 0.8002 | 0.7991 | 0.7996 | 0.9530 | | 0.0141 | 10.0 | 8780 | 0.2224 | 0.8029 | 0.8097 | 0.8063 | 0.9546 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2