PEFT
Safetensors
File size: 1,429 Bytes
272b90e
 
d36e590
 
20c2234
 
272b90e
 
f1b6ffb
272b90e
d36e590
 
 
 
 
 
272b90e
d36e590
272b90e
d36e590
 
272b90e
d36e590
 
272b90e
d36e590
 
272b90e
 
 
d36e590
272b90e
d36e590
272b90e
d36e590
272b90e
d36e590
272b90e
4e09014
272b90e
d36e590
272b90e
d36e590
 
272b90e
d36e590
1192901
d36e590
272b90e
d36e590
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
datasets:
- chYassine/WebAttack-CVSSMetrics
library_name: peft
license: apache-2.0
---

## Model Details

**Model Description**  
Developed by: Yassine Chagna & Ahmed Ouidani  
Model type: Cyberattack Detection  
Language(s) (NLP): English  
License: apache 2.0  
Finetuned from model: mistralai/Mistral-7B-Instruct-v0.3  

### Uses

**Direct Use**  
This model can be directly used for monitoring web access logs to detect potential cyber attacks.

**Downstream Use**  
The model can be adapted for other types of logs and cyberattack detection scenarios.

**Out-of-Scope Use**  
This model is not designed for general-purpose NLP tasks unrelated to cyberattack detection.

### Recommendations

Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. More information is needed for further recommendations.

### Summary

### Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

- Hardware Type: A100 GPU

### Technical Specifications [optional]

**Model Architecture and Objective**  
The model uses the architecture of mistralai/Mistral-7B-Instruct-v0.3, fine-tuned for cyberattack detection on web access logs.

**Compute Infrastructure**  
Hardware: Single A100 GPU  
Software: PEFT 0.11.2.dev0

### Framework versions  
PEFT 0.11.2.dev0