File size: 1,427 Bytes
272b90e d36e590 20c2234 272b90e f1b6ffb 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 272b90e d36e590 1192901 d36e590 272b90e d36e590 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
datasets:
- chYassine/WebAttack-CVSSMetrics
library_name: peft
license: apache-2.0
---
## Model Details
**Model Description**
Developed by: Yassine Chagna & Ahmed Ouidani
Model type: Cyberattack Detection
Language(s) (NLP): English
License: apache 2.0
Finetuned from model: mistralai/Mistral-7B-Instruct-v0.3
### Uses
**Direct Use**
This model can be directly used for monitoring web access logs to detect potential cyber attacks.
**Downstream Use**
The model can be adapted for other types of logs and cyberattack detection scenarios.
**Out-of-Scope Use**
This model is not designed for general-purpose NLP tasks unrelated to cyberattack detection.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. More information is needed for further recommendations.
### Summary
### Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: T4 GPU
### Technical Specifications [optional]
**Model Architecture and Objective**
The model uses the architecture of mistralai/Mistral-7B-Instruct-v0.3, fine-tuned for cyberattack detection on web access logs.
**Compute Infrastructure**
Hardware: Single A100 GPU
Software: PEFT 0.11.2.dev0
### Framework versions
PEFT 0.11.2.dev0 |