Training complete.
Browse files
README.md
CHANGED
@@ -13,33 +13,21 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# pegasus-samsum
|
15 |
|
16 |
-
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 1.
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
-
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
-
|
27 |
|
28 |
## Training and evaluation data
|
29 |
|
30 |
-
|
31 |
-
num_train_epochs=1,
|
32 |
-
warmup_steps=500,
|
33 |
-
per_device_train_batch_size=1,
|
34 |
-
per_gpu_eval_batch_size=1,
|
35 |
-
weight_decay=0.01,
|
36 |
-
logging_steps=10,
|
37 |
-
push_to_hub=True,
|
38 |
-
evaluation_strategy='steps',
|
39 |
-
eval_steps=500,
|
40 |
-
save_steps=1e6,
|
41 |
-
gradient_accumulation_steps=16,
|
42 |
-
remove_unused_columns=False,
|
43 |
|
44 |
## Training procedure
|
45 |
|
@@ -48,20 +36,24 @@ The training args are the following:
|
|
48 |
The following hyperparameters were used during training:
|
49 |
- learning_rate: 5e-05
|
50 |
- train_batch_size: 1
|
51 |
-
- eval_batch_size:
|
52 |
- seed: 42
|
53 |
- gradient_accumulation_steps: 16
|
54 |
- total_train_batch_size: 16
|
55 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
- lr_scheduler_type: linear
|
57 |
- lr_scheduler_warmup_steps: 500
|
58 |
-
- num_epochs:
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss |
|
63 |
|:-------------:|:------:|:----:|:---------------:|
|
64 |
-
| 1.5449 | 0.5431 | 500 | 1.
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
### Framework versions
|
|
|
13 |
|
14 |
# pegasus-samsum
|
15 |
|
16 |
+
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.3374
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
+
More information needed
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
+
More information needed
|
27 |
|
28 |
## Training and evaluation data
|
29 |
|
30 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Training procedure
|
33 |
|
|
|
36 |
The following hyperparameters were used during training:
|
37 |
- learning_rate: 5e-05
|
38 |
- train_batch_size: 1
|
39 |
+
- eval_batch_size: 8
|
40 |
- seed: 42
|
41 |
- gradient_accumulation_steps: 16
|
42 |
- total_train_batch_size: 16
|
43 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_steps: 500
|
46 |
+
- num_epochs: 3
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
|:-------------:|:------:|:----:|:---------------:|
|
52 |
+
| 1.5449 | 0.5431 | 500 | 1.4638 |
|
53 |
+
| 1.365 | 1.0863 | 1000 | 1.3894 |
|
54 |
+
| 1.3509 | 1.6294 | 1500 | 1.3562 |
|
55 |
+
| 1.3311 | 2.1726 | 2000 | 1.3449 |
|
56 |
+
| 1.2358 | 2.7157 | 2500 | 1.3374 |
|
57 |
|
58 |
|
59 |
### Framework versions
|