{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79faabed63c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690501181772064834, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOYWXj8yrrg99tcRP4WJ2T6pCZy/5E/ev4ET7b6ppWe/KVGcPqvJDcCz/Vg+lnMCPwr3gz/sanS/CEGwPmc+Er9ySlC/E1FyP1a5qD9S3ZE/2LbUviihOb5zuym/1uvtP0Ukzb+6MLo+VC28v4m3Wb/dklG+4/V1v8orBb9wwIm+6DXOv+AnCz/NHQq8vk4zPq2hFL0z/EM/VglzvhWgL755/xG/j7k7Pys1yT6Mrmw8v9FRP82xvb4QiQ2/mFb3vm9mRr/C8Io/ISN1PlFnWb/Hux8/ujC6PkUiLj+Jt1m//kxbPkQHKL/UB3e9FV2KP12Isj1rI06/jW5uvs4suD2SPb8/Lu0Lvk9+8745Z5U+g76tPinCUD/EaMS9uZXgvlqeh79U1PM+4HWavpNMAEAmdE++WAcKvnGglb/rVYI9x7sfP7owuj5FIi4/ibdZvxpiyj/aSy+/yLrEvdN1JT8REre/yryzP3Mlmr84cdK/aWXFPz+pMb4Grco+OGj1vsYE0D/BYhS/XzvTPmAAYL8iGaq/Qf1hPlyp4r4N8d4+a8mdPiDhYL76k7+/LrEuPse7Hz+6MLo+VC28v4m3Wb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACIIs01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIqERPAAAAAAosvG/AAAAAP7hzz0AAAAAxrTyPwAAAAC1POW7AAAAADoS3D8AAAAASzu0PAAAAAB0dvC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwbFtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO7ue70AAAAAzYL5vwAAAADutBO9AAAAACoF+z8AAAAAbZ5vvAAAAABMQPw/AAAAAL0UlT0AAAAAp3/bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPTxbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAbA5w9AAAAAOH+578AAAAAS3GQvAAAAAC+geM/AAAAADVjfDsAAAAAkHb+PwAAAADR0dC8AAAAAMFG878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbekk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEfSGPQAAAAB68QDAAAAAAP0A4z0AAAAAwuLrPwAAAACVVws7AAAAAFuo+z8AAAAALmCevQAAAAAlZvG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHxrS9RJmNCMAWyUTegDjAF0lEdArRIcnkT6BXV9lChoBkdAhzfwoTfzjGgHTegDaAhHQK0VKWYWtU51fZQoaAZHQJBkJ6u4gA9oB03oA2gIR0CtGJM8ox5+dX2UKGgGR0CHHyAiml67aAdN6ANoCEdArRwPnKW9lHV9lChoBkdAeU1a7EpAlmgHTegDaAhHQK0f7ySV4X51fZQoaAZHQIfGgFzMibFoB03oA2gIR0CtJD0N8VpLdX2UKGgGR0B8bcGNaQmvaAdN6ANoCEdArSlNPi1iOXV9lChoBkdAh6fBTwUg0WgHTegDaAhHQK0swWHDaXd1fZQoaAZHQIXl2uieumtoB03oA2gIR0CtMIwy6+WXdX2UKGgGR0Boysfs/pt8aAdN6ANoCEdArTOHiR4hU3V9lChoBkdAkEi9gWrOq2gHTegDaAhHQK02+hStNi91fZQoaAZHQID04zabnYBoB03oA2gIR0CtOm0GNaQndX2UKGgGR0CGg6kl/pdKaAdN6ANoCEdArT8dB+nZTXV9lChoBkdAjDltXxOLzmgHTegDaAhHQK1D7a/RE4N1fZQoaAZHQIuhh4GD+R5oB03oA2gIR0CtR4dIPK+0dX2UKGgGR0CDZZaHsTnJaAdN6ANoCEdArUs1TkyULXV9lChoBkdAiJqNGd7OV2gHTegDaAhHQK1O8nrIHTt1fZQoaAZHQIXmvLLZBcBoB03oA2gIR0CtUfYBFNL2dX2UKGgGR0CDqgsK9f1IaAdN6ANoCEdArVVWVHFxXHV9lChoBkdAgRiYg7o0RGgHTegDaAhHQK1Y0xqwhW51fZQoaAZHQIh/tYW+GoJoB03oA2gIR0CtXtaX0Gu+dX2UKGgGR0CG61Uoa1kUaAdN6ANoCEdArWKC+8Gs3nV9lChoBkdAgLjU6PsAvWgHTegDaAhHQK1l6o0ALiN1fZQoaAZHQIxD5YA80UJoB03oA2gIR0CtaVKIrOJMdX2UKGgGR0CLQKeDFqBVaAdN6ANoCEdArW0WqYJE6XV9lChoBkdAkhsG+0w8GWgHTegDaAhHQK1wL2pyZKF1fZQoaAZHQI1grzshPj5oB03oA2gIR0Ctc6LMkhRqdX2UKGgGR0CFPM4rBj4IaAdN6ANoCEdArXiml0o0AXV9lChoBkdAkV7rY5DJEGgHTegDaAhHQK1+CwyIpH91fZQoaAZHQIebM5EMLF5oB03oA2gIR0CtgR/oRqXXdX2UKGgGR0CRsBQYUFjeaAdN6ANoCEdArYSzohY/3XV9lChoBkdAjMywSJ0nxGgHTegDaAhHQK2Ia0u14Ph1fZQoaAZHQJOXlMBZIQRoB03oA2gIR0CtjDl1SwW4dX2UKGgGR0CTUIkNWluWaAdN6ANoCEdArY8vtKIznHV9lChoBkdAkRwfjsD4g2gHTegDaAhHQK2ToczZYgd1fZQoaAZHQJGVNsqJ/G5oB03oA2gIR0CtmPDNIK+jdX2UKGgGR0CTIypoK2KEaAdN6ANoCEdArZzEFbFCLXV9lChoBkdAlfupKraM72gHTegDaAhHQK2fxowEhaF1fZQoaAZHQJDZ2PHT7VJoB03oA2gIR0Ctox1Aqur7dX2UKGgGR0CWA+vi97F9aAdN6ANoCEdAraZ6UTtb93V9lChoBkdAk3I7el9Br2gHTegDaAhHQK2qTmDlHSZ1fZQoaAZHQJPDDoHLRrtoB03oA2gIR0CtrbBsQ/X5dX2UKGgGR0CT1YmJ3xFzaAdN6ANoCEdArbMNOsT37HV9lChoBkdAku34AbQ1JmgHTegDaAhHQK23D4Pf8/F1fZQoaAZHQJY0sUCaJANoB03oA2gIR0CtutV2Rq46dX2UKGgGR0COrW+7lJYlaAdN6ANoCEdArb3KYoiLVHV9lChoBkdAjqGKYAsCk2gHTegDaAhHQK3BLIIWxhV1fZQoaAZHQJRyeHtWuHNoB03oA2gIR0CtxKZNwiqydX2UKGgGR0CTzfjWkJrtaAdN6ANoCEdArchpV81Gb3V9lChoBkdAlPrF+EytWGgHTegDaAhHQK3M67lq8Dl1fZQoaAZHQJOkTB7/n4hoB03oA2gIR0Ct0duYIBzWdX2UKGgGR0CUE5u+h4+saAdN6ANoCEdArdVFsabWmXV9lChoBkdAlUtSkwevIWgHTegDaAhHQK3ZErJbMX91fZQoaAZHQJKtnt2LYPJoB03oA2gIR0Ct3A0HQhOhdX2UKGgGR0CUQzyWRigCaAdN6ANoCEdArd93+ERJ3HV9lChoBkdAk66UEgW8AmgHTegDaAhHQK3i3MX7+DR1fZQoaAZHQJJ6J81Gb1BoB03oA2gIR0Ct56x+rlvIdX2UKGgGR0CUDTnOB19waAdN6ANoCEdArexz67/XG3V9lChoBkdAlFwrtqpLmWgHTegDaAhHQK3wHQCSzPd1fZQoaAZHQJGX/5sTFl1oB03oA2gIR0Ct84Qob4rSdX2UKGgGR0CTDxL9deIEaAdN6ANoCEdArfdFn5BToHV9lChoBkdAlh8BgeA/cGgHTegDaAhHQK36NTG5tnB1fZQoaAZHQJOFLSOR1YBoB03oA2gIR0Ct/ZEvCdjHdX2UKGgGR0CWQ4tpmEoOaAdN6ANoCEdArgEERradtnV9lChoBkdAluuCx/ustGgHTegDaAhHQK4G4VrRBu51fZQoaAZHQJUbUPNFBppoB03oA2gIR0CuCtMDnvDxdX2UKGgGR0CVea27Wd3CaAdN6ANoCEdArg5VUn5SFXV9lChoBkdAk+JCuIRAbGgHTegDaAhHQK4RzOh0yQB1fZQoaAZHQJWMnCaZx71oB03oA2gIR0CuFZmr0aqCdX2UKGgGR0CWsoaVUuL8aAdN6ANoCEdArhibwpe/pXV9lChoBkdAlJlCd8RcvGgHTegDaAhHQK4b/FcY64l1fZQoaAZHQJenp0JWvKVoB03oA2gIR0CuIJea8YhudX2UKGgGR0CXX640Mw10aAdN6ANoCEdAriY0M3IdVHV9lChoBkdAlM2t9Ujs2WgHTegDaAhHQK4pOiGFi8Z1fZQoaAZHQJDdnEXLvCxoB03oA2gIR0CuLJ/xc3VDdX2UKGgGR0CW3OmPYFq0aAdN6ANoCEdArjASEi+tbXV9lChoBkdAlW7hBZ6lcmgHTegDaAhHQK4z40u14Ph1fZQoaAZHQJfygV58jRloB03oA2gIR0CuNvJ6Y3NtdX2UKGgGR0CX4jzdUKiPaAdN6ANoCEdArjr+3azu4XV9lChoBkdAl7yk/bCaZ2gHTegDaAhHQK5AaGlhw2l1fZQoaAZHQJboLdepn6FoB03oA2gIR0CuRLPomoitdX2UKGgGR0CXhXcZLqUvaAdN6ANoCEdArkevDP4VRHV9lChoBkdAlwRGXsw+MmgHTegDaAhHQK5K/wo9cKR1fZQoaAZHQJdI6/Yao/BoB03oA2gIR0CuTl1hLGrCdX2UKGgGR0CYkOVFx4puaAdN6ANoCEdArlJLDAJswnV9lChoBkdAlV19Tgl4T2gHTegDaAhHQK5VSNIbwSd1fZQoaAZHQJbIS6wt8NRoB03oA2gIR0CuWmcz67/XdX2UKGgGR0CS0BnezlcRaAdN6ANoCEdArl8g/Vy3kXV9lChoBkdAk71tSQ5my2gHTegDaAhHQK5i79n9Nvh1fZQoaAZHQJH6Dl/6O5toB03oA2gIR0CuZeX+l0o0dX2UKGgGR0CVEXfq5byIaAdN6ANoCEdArmlKoMrmQ3V9lChoBkdAk0Mw+MZP22gHTegDaAhHQK5sqcFQl8h1fZQoaAZHQJXLVWyTpxFoB03oA2gIR0CucGpDE3sHdX2UKGgGR0CVsaTvAoG6aAdN6ANoCEdArnRvgrH2iHV9lChoBkdAk8xQe3hGY2gHTegDaAhHQK55vvnbItF1fZQoaAZHQJieg8fV7QdoB03oA2gIR0CufSZi/fwadX2UKGgGR0CVT4oW56MSaAdN6ANoCEdAroD8mv4dqHV9lChoBkdAlWj5QUHpr2gHTegDaAhHQK6D5MqSX+l1fZQoaAZHQJQN+CNCJGhoB03oA2gIR0Cuhzha1TisdX2UKGgGR0CWA0idrftQaAdN6ANoCEdAroqbpu/DcnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}