cgr28 commited on
Commit
1542d14
·
1 Parent(s): da7bd15

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1364.78 +/- 62.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:204f62d1e1180f62584cd7632906f592be1b7a90015f5d55ed897280143b961c
3
+ size 129246
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79faaafb1090>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79faaafb1120>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79faaafb11b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79faaafb1240>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79faaafb12d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79faaafb1360>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79faaafb13f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79faaafb1480>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79faaafb1510>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79faaafb15a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79faaafb1630>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79faaafb16c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79faabed63c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1690501181772064834,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOYWXj8yrrg99tcRP4WJ2T6pCZy/5E/ev4ET7b6ppWe/KVGcPqvJDcCz/Vg+lnMCPwr3gz/sanS/CEGwPmc+Er9ySlC/E1FyP1a5qD9S3ZE/2LbUviihOb5zuym/1uvtP0Ukzb+6MLo+VC28v4m3Wb/dklG+4/V1v8orBb9wwIm+6DXOv+AnCz/NHQq8vk4zPq2hFL0z/EM/VglzvhWgL755/xG/j7k7Pys1yT6Mrmw8v9FRP82xvb4QiQ2/mFb3vm9mRr/C8Io/ISN1PlFnWb/Hux8/ujC6PkUiLj+Jt1m//kxbPkQHKL/UB3e9FV2KP12Isj1rI06/jW5uvs4suD2SPb8/Lu0Lvk9+8745Z5U+g76tPinCUD/EaMS9uZXgvlqeh79U1PM+4HWavpNMAEAmdE++WAcKvnGglb/rVYI9x7sfP7owuj5FIi4/ibdZvxpiyj/aSy+/yLrEvdN1JT8REre/yryzP3Mlmr84cdK/aWXFPz+pMb4Grco+OGj1vsYE0D/BYhS/XzvTPmAAYL8iGaq/Qf1hPlyp4r4N8d4+a8mdPiDhYL76k7+/LrEuPse7Hz+6MLo+VC28v4m3Wb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACIIs01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIqERPAAAAAAosvG/AAAAAP7hzz0AAAAAxrTyPwAAAAC1POW7AAAAADoS3D8AAAAASzu0PAAAAAB0dvC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwbFtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO7ue70AAAAAzYL5vwAAAADutBO9AAAAACoF+z8AAAAAbZ5vvAAAAABMQPw/AAAAAL0UlT0AAAAAp3/bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPTxbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAbA5w9AAAAAOH+578AAAAAS3GQvAAAAAC+geM/AAAAADVjfDsAAAAAkHb+PwAAAADR0dC8AAAAAMFG878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbekk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEfSGPQAAAAB68QDAAAAAAP0A4z0AAAAAwuLrPwAAAACVVws7AAAAAFuo+z8AAAAALmCevQAAAAAlZvG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHxrS9RJmNCMAWyUTegDjAF0lEdArRIcnkT6BXV9lChoBkdAhzfwoTfzjGgHTegDaAhHQK0VKWYWtU51fZQoaAZHQJBkJ6u4gA9oB03oA2gIR0CtGJM8ox5+dX2UKGgGR0CHHyAiml67aAdN6ANoCEdArRwPnKW9lHV9lChoBkdAeU1a7EpAlmgHTegDaAhHQK0f7ySV4X51fZQoaAZHQIfGgFzMibFoB03oA2gIR0CtJD0N8VpLdX2UKGgGR0B8bcGNaQmvaAdN6ANoCEdArSlNPi1iOXV9lChoBkdAh6fBTwUg0WgHTegDaAhHQK0swWHDaXd1fZQoaAZHQIXl2uieumtoB03oA2gIR0CtMIwy6+WXdX2UKGgGR0Boysfs/pt8aAdN6ANoCEdArTOHiR4hU3V9lChoBkdAkEi9gWrOq2gHTegDaAhHQK02+hStNi91fZQoaAZHQID04zabnYBoB03oA2gIR0CtOm0GNaQndX2UKGgGR0CGg6kl/pdKaAdN6ANoCEdArT8dB+nZTXV9lChoBkdAjDltXxOLzmgHTegDaAhHQK1D7a/RE4N1fZQoaAZHQIuhh4GD+R5oB03oA2gIR0CtR4dIPK+0dX2UKGgGR0CDZZaHsTnJaAdN6ANoCEdArUs1TkyULXV9lChoBkdAiJqNGd7OV2gHTegDaAhHQK1O8nrIHTt1fZQoaAZHQIXmvLLZBcBoB03oA2gIR0CtUfYBFNL2dX2UKGgGR0CDqgsK9f1IaAdN6ANoCEdArVVWVHFxXHV9lChoBkdAgRiYg7o0RGgHTegDaAhHQK1Y0xqwhW51fZQoaAZHQIh/tYW+GoJoB03oA2gIR0CtXtaX0Gu+dX2UKGgGR0CG61Uoa1kUaAdN6ANoCEdArWKC+8Gs3nV9lChoBkdAgLjU6PsAvWgHTegDaAhHQK1l6o0ALiN1fZQoaAZHQIxD5YA80UJoB03oA2gIR0CtaVKIrOJMdX2UKGgGR0CLQKeDFqBVaAdN6ANoCEdArW0WqYJE6XV9lChoBkdAkhsG+0w8GWgHTegDaAhHQK1wL2pyZKF1fZQoaAZHQI1grzshPj5oB03oA2gIR0Ctc6LMkhRqdX2UKGgGR0CFPM4rBj4IaAdN6ANoCEdArXiml0o0AXV9lChoBkdAkV7rY5DJEGgHTegDaAhHQK1+CwyIpH91fZQoaAZHQIebM5EMLF5oB03oA2gIR0CtgR/oRqXXdX2UKGgGR0CRsBQYUFjeaAdN6ANoCEdArYSzohY/3XV9lChoBkdAjMywSJ0nxGgHTegDaAhHQK2Ia0u14Ph1fZQoaAZHQJOXlMBZIQRoB03oA2gIR0CtjDl1SwW4dX2UKGgGR0CTUIkNWluWaAdN6ANoCEdArY8vtKIznHV9lChoBkdAkRwfjsD4g2gHTegDaAhHQK2ToczZYgd1fZQoaAZHQJGVNsqJ/G5oB03oA2gIR0CtmPDNIK+jdX2UKGgGR0CTIypoK2KEaAdN6ANoCEdArZzEFbFCLXV9lChoBkdAlfupKraM72gHTegDaAhHQK2fxowEhaF1fZQoaAZHQJDZ2PHT7VJoB03oA2gIR0Ctox1Aqur7dX2UKGgGR0CWA+vi97F9aAdN6ANoCEdAraZ6UTtb93V9lChoBkdAk3I7el9Br2gHTegDaAhHQK2qTmDlHSZ1fZQoaAZHQJPDDoHLRrtoB03oA2gIR0CtrbBsQ/X5dX2UKGgGR0CT1YmJ3xFzaAdN6ANoCEdArbMNOsT37HV9lChoBkdAku34AbQ1JmgHTegDaAhHQK23D4Pf8/F1fZQoaAZHQJY0sUCaJANoB03oA2gIR0CtutV2Rq46dX2UKGgGR0COrW+7lJYlaAdN6ANoCEdArb3KYoiLVHV9lChoBkdAjqGKYAsCk2gHTegDaAhHQK3BLIIWxhV1fZQoaAZHQJRyeHtWuHNoB03oA2gIR0CtxKZNwiqydX2UKGgGR0CTzfjWkJrtaAdN6ANoCEdArchpV81Gb3V9lChoBkdAlPrF+EytWGgHTegDaAhHQK3M67lq8Dl1fZQoaAZHQJOkTB7/n4hoB03oA2gIR0Ct0duYIBzWdX2UKGgGR0CUE5u+h4+saAdN6ANoCEdArdVFsabWmXV9lChoBkdAlUtSkwevIWgHTegDaAhHQK3ZErJbMX91fZQoaAZHQJKtnt2LYPJoB03oA2gIR0Ct3A0HQhOhdX2UKGgGR0CUQzyWRigCaAdN6ANoCEdArd93+ERJ3HV9lChoBkdAk66UEgW8AmgHTegDaAhHQK3i3MX7+DR1fZQoaAZHQJJ6J81Gb1BoB03oA2gIR0Ct56x+rlvIdX2UKGgGR0CUDTnOB19waAdN6ANoCEdArexz67/XG3V9lChoBkdAlFwrtqpLmWgHTegDaAhHQK3wHQCSzPd1fZQoaAZHQJGX/5sTFl1oB03oA2gIR0Ct84Qob4rSdX2UKGgGR0CTDxL9deIEaAdN6ANoCEdArfdFn5BToHV9lChoBkdAlh8BgeA/cGgHTegDaAhHQK36NTG5tnB1fZQoaAZHQJOFLSOR1YBoB03oA2gIR0Ct/ZEvCdjHdX2UKGgGR0CWQ4tpmEoOaAdN6ANoCEdArgEERradtnV9lChoBkdAluuCx/ustGgHTegDaAhHQK4G4VrRBu51fZQoaAZHQJUbUPNFBppoB03oA2gIR0CuCtMDnvDxdX2UKGgGR0CVea27Wd3CaAdN6ANoCEdArg5VUn5SFXV9lChoBkdAk+JCuIRAbGgHTegDaAhHQK4RzOh0yQB1fZQoaAZHQJWMnCaZx71oB03oA2gIR0CuFZmr0aqCdX2UKGgGR0CWsoaVUuL8aAdN6ANoCEdArhibwpe/pXV9lChoBkdAlJlCd8RcvGgHTegDaAhHQK4b/FcY64l1fZQoaAZHQJenp0JWvKVoB03oA2gIR0CuIJea8YhudX2UKGgGR0CXX640Mw10aAdN6ANoCEdAriY0M3IdVHV9lChoBkdAlM2t9Ujs2WgHTegDaAhHQK4pOiGFi8Z1fZQoaAZHQJDdnEXLvCxoB03oA2gIR0CuLJ/xc3VDdX2UKGgGR0CW3OmPYFq0aAdN6ANoCEdArjASEi+tbXV9lChoBkdAlW7hBZ6lcmgHTegDaAhHQK4z40u14Ph1fZQoaAZHQJfygV58jRloB03oA2gIR0CuNvJ6Y3NtdX2UKGgGR0CX4jzdUKiPaAdN6ANoCEdArjr+3azu4XV9lChoBkdAl7yk/bCaZ2gHTegDaAhHQK5AaGlhw2l1fZQoaAZHQJboLdepn6FoB03oA2gIR0CuRLPomoitdX2UKGgGR0CXhXcZLqUvaAdN6ANoCEdArkevDP4VRHV9lChoBkdAlwRGXsw+MmgHTegDaAhHQK5K/wo9cKR1fZQoaAZHQJdI6/Yao/BoB03oA2gIR0CuTl1hLGrCdX2UKGgGR0CYkOVFx4puaAdN6ANoCEdArlJLDAJswnV9lChoBkdAlV19Tgl4T2gHTegDaAhHQK5VSNIbwSd1fZQoaAZHQJbIS6wt8NRoB03oA2gIR0CuWmcz67/XdX2UKGgGR0CS0BnezlcRaAdN6ANoCEdArl8g/Vy3kXV9lChoBkdAk71tSQ5my2gHTegDaAhHQK5i79n9Nvh1fZQoaAZHQJH6Dl/6O5toB03oA2gIR0CuZeX+l0o0dX2UKGgGR0CVEXfq5byIaAdN6ANoCEdArmlKoMrmQ3V9lChoBkdAk0Mw+MZP22gHTegDaAhHQK5sqcFQl8h1fZQoaAZHQJXLVWyTpxFoB03oA2gIR0CucGpDE3sHdX2UKGgGR0CVsaTvAoG6aAdN6ANoCEdArnRvgrH2iHV9lChoBkdAk8xQe3hGY2gHTegDaAhHQK55vvnbItF1fZQoaAZHQJieg8fV7QdoB03oA2gIR0CufSZi/fwadX2UKGgGR0CVT4oW56MSaAdN6ANoCEdAroD8mv4dqHV9lChoBkdAlWj5QUHpr2gHTegDaAhHQK6D5MqSX+l1fZQoaAZHQJQN+CNCJGhoB03oA2gIR0Cuhzha1TisdX2UKGgGR0CWA0idrftQaAdN6ANoCEdAroqbpu/DcnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e290dce31efc54e1981270538df42e1f27f967dd3865c5f1ec1bc4f83c24306
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b00054264a5aec49444b5222b5400cce00f16da7dc69409d41a25f0ea5de59c7
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79faaafb1090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79faaafb1120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79faaafb11b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79faaafb1240>", "_build": "<function ActorCriticPolicy._build at 0x79faaafb12d0>", "forward": "<function ActorCriticPolicy.forward at 0x79faaafb1360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79faaafb13f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79faaafb1480>", "_predict": "<function ActorCriticPolicy._predict at 0x79faaafb1510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79faaafb15a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79faaafb1630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79faaafb16c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79faabed63c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690501181772064834, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOYWXj8yrrg99tcRP4WJ2T6pCZy/5E/ev4ET7b6ppWe/KVGcPqvJDcCz/Vg+lnMCPwr3gz/sanS/CEGwPmc+Er9ySlC/E1FyP1a5qD9S3ZE/2LbUviihOb5zuym/1uvtP0Ukzb+6MLo+VC28v4m3Wb/dklG+4/V1v8orBb9wwIm+6DXOv+AnCz/NHQq8vk4zPq2hFL0z/EM/VglzvhWgL755/xG/j7k7Pys1yT6Mrmw8v9FRP82xvb4QiQ2/mFb3vm9mRr/C8Io/ISN1PlFnWb/Hux8/ujC6PkUiLj+Jt1m//kxbPkQHKL/UB3e9FV2KP12Isj1rI06/jW5uvs4suD2SPb8/Lu0Lvk9+8745Z5U+g76tPinCUD/EaMS9uZXgvlqeh79U1PM+4HWavpNMAEAmdE++WAcKvnGglb/rVYI9x7sfP7owuj5FIi4/ibdZvxpiyj/aSy+/yLrEvdN1JT8REre/yryzP3Mlmr84cdK/aWXFPz+pMb4Grco+OGj1vsYE0D/BYhS/XzvTPmAAYL8iGaq/Qf1hPlyp4r4N8d4+a8mdPiDhYL76k7+/LrEuPse7Hz+6MLo+VC28v4m3Wb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACIIs01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIqERPAAAAAAosvG/AAAAAP7hzz0AAAAAxrTyPwAAAAC1POW7AAAAADoS3D8AAAAASzu0PAAAAAB0dvC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwbFtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO7ue70AAAAAzYL5vwAAAADutBO9AAAAACoF+z8AAAAAbZ5vvAAAAABMQPw/AAAAAL0UlT0AAAAAp3/bvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPTxbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAbA5w9AAAAAOH+578AAAAAS3GQvAAAAAC+geM/AAAAADVjfDsAAAAAkHb+PwAAAADR0dC8AAAAAMFG878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbekk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEfSGPQAAAAB68QDAAAAAAP0A4z0AAAAAwuLrPwAAAACVVws7AAAAAFuo+z8AAAAALmCevQAAAAAlZvG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHxrS9RJmNCMAWyUTegDjAF0lEdArRIcnkT6BXV9lChoBkdAhzfwoTfzjGgHTegDaAhHQK0VKWYWtU51fZQoaAZHQJBkJ6u4gA9oB03oA2gIR0CtGJM8ox5+dX2UKGgGR0CHHyAiml67aAdN6ANoCEdArRwPnKW9lHV9lChoBkdAeU1a7EpAlmgHTegDaAhHQK0f7ySV4X51fZQoaAZHQIfGgFzMibFoB03oA2gIR0CtJD0N8VpLdX2UKGgGR0B8bcGNaQmvaAdN6ANoCEdArSlNPi1iOXV9lChoBkdAh6fBTwUg0WgHTegDaAhHQK0swWHDaXd1fZQoaAZHQIXl2uieumtoB03oA2gIR0CtMIwy6+WXdX2UKGgGR0Boysfs/pt8aAdN6ANoCEdArTOHiR4hU3V9lChoBkdAkEi9gWrOq2gHTegDaAhHQK02+hStNi91fZQoaAZHQID04zabnYBoB03oA2gIR0CtOm0GNaQndX2UKGgGR0CGg6kl/pdKaAdN6ANoCEdArT8dB+nZTXV9lChoBkdAjDltXxOLzmgHTegDaAhHQK1D7a/RE4N1fZQoaAZHQIuhh4GD+R5oB03oA2gIR0CtR4dIPK+0dX2UKGgGR0CDZZaHsTnJaAdN6ANoCEdArUs1TkyULXV9lChoBkdAiJqNGd7OV2gHTegDaAhHQK1O8nrIHTt1fZQoaAZHQIXmvLLZBcBoB03oA2gIR0CtUfYBFNL2dX2UKGgGR0CDqgsK9f1IaAdN6ANoCEdArVVWVHFxXHV9lChoBkdAgRiYg7o0RGgHTegDaAhHQK1Y0xqwhW51fZQoaAZHQIh/tYW+GoJoB03oA2gIR0CtXtaX0Gu+dX2UKGgGR0CG61Uoa1kUaAdN6ANoCEdArWKC+8Gs3nV9lChoBkdAgLjU6PsAvWgHTegDaAhHQK1l6o0ALiN1fZQoaAZHQIxD5YA80UJoB03oA2gIR0CtaVKIrOJMdX2UKGgGR0CLQKeDFqBVaAdN6ANoCEdArW0WqYJE6XV9lChoBkdAkhsG+0w8GWgHTegDaAhHQK1wL2pyZKF1fZQoaAZHQI1grzshPj5oB03oA2gIR0Ctc6LMkhRqdX2UKGgGR0CFPM4rBj4IaAdN6ANoCEdArXiml0o0AXV9lChoBkdAkV7rY5DJEGgHTegDaAhHQK1+CwyIpH91fZQoaAZHQIebM5EMLF5oB03oA2gIR0CtgR/oRqXXdX2UKGgGR0CRsBQYUFjeaAdN6ANoCEdArYSzohY/3XV9lChoBkdAjMywSJ0nxGgHTegDaAhHQK2Ia0u14Ph1fZQoaAZHQJOXlMBZIQRoB03oA2gIR0CtjDl1SwW4dX2UKGgGR0CTUIkNWluWaAdN6ANoCEdArY8vtKIznHV9lChoBkdAkRwfjsD4g2gHTegDaAhHQK2ToczZYgd1fZQoaAZHQJGVNsqJ/G5oB03oA2gIR0CtmPDNIK+jdX2UKGgGR0CTIypoK2KEaAdN6ANoCEdArZzEFbFCLXV9lChoBkdAlfupKraM72gHTegDaAhHQK2fxowEhaF1fZQoaAZHQJDZ2PHT7VJoB03oA2gIR0Ctox1Aqur7dX2UKGgGR0CWA+vi97F9aAdN6ANoCEdAraZ6UTtb93V9lChoBkdAk3I7el9Br2gHTegDaAhHQK2qTmDlHSZ1fZQoaAZHQJPDDoHLRrtoB03oA2gIR0CtrbBsQ/X5dX2UKGgGR0CT1YmJ3xFzaAdN6ANoCEdArbMNOsT37HV9lChoBkdAku34AbQ1JmgHTegDaAhHQK23D4Pf8/F1fZQoaAZHQJY0sUCaJANoB03oA2gIR0CtutV2Rq46dX2UKGgGR0COrW+7lJYlaAdN6ANoCEdArb3KYoiLVHV9lChoBkdAjqGKYAsCk2gHTegDaAhHQK3BLIIWxhV1fZQoaAZHQJRyeHtWuHNoB03oA2gIR0CtxKZNwiqydX2UKGgGR0CTzfjWkJrtaAdN6ANoCEdArchpV81Gb3V9lChoBkdAlPrF+EytWGgHTegDaAhHQK3M67lq8Dl1fZQoaAZHQJOkTB7/n4hoB03oA2gIR0Ct0duYIBzWdX2UKGgGR0CUE5u+h4+saAdN6ANoCEdArdVFsabWmXV9lChoBkdAlUtSkwevIWgHTegDaAhHQK3ZErJbMX91fZQoaAZHQJKtnt2LYPJoB03oA2gIR0Ct3A0HQhOhdX2UKGgGR0CUQzyWRigCaAdN6ANoCEdArd93+ERJ3HV9lChoBkdAk66UEgW8AmgHTegDaAhHQK3i3MX7+DR1fZQoaAZHQJJ6J81Gb1BoB03oA2gIR0Ct56x+rlvIdX2UKGgGR0CUDTnOB19waAdN6ANoCEdArexz67/XG3V9lChoBkdAlFwrtqpLmWgHTegDaAhHQK3wHQCSzPd1fZQoaAZHQJGX/5sTFl1oB03oA2gIR0Ct84Qob4rSdX2UKGgGR0CTDxL9deIEaAdN6ANoCEdArfdFn5BToHV9lChoBkdAlh8BgeA/cGgHTegDaAhHQK36NTG5tnB1fZQoaAZHQJOFLSOR1YBoB03oA2gIR0Ct/ZEvCdjHdX2UKGgGR0CWQ4tpmEoOaAdN6ANoCEdArgEERradtnV9lChoBkdAluuCx/ustGgHTegDaAhHQK4G4VrRBu51fZQoaAZHQJUbUPNFBppoB03oA2gIR0CuCtMDnvDxdX2UKGgGR0CVea27Wd3CaAdN6ANoCEdArg5VUn5SFXV9lChoBkdAk+JCuIRAbGgHTegDaAhHQK4RzOh0yQB1fZQoaAZHQJWMnCaZx71oB03oA2gIR0CuFZmr0aqCdX2UKGgGR0CWsoaVUuL8aAdN6ANoCEdArhibwpe/pXV9lChoBkdAlJlCd8RcvGgHTegDaAhHQK4b/FcY64l1fZQoaAZHQJenp0JWvKVoB03oA2gIR0CuIJea8YhudX2UKGgGR0CXX640Mw10aAdN6ANoCEdAriY0M3IdVHV9lChoBkdAlM2t9Ujs2WgHTegDaAhHQK4pOiGFi8Z1fZQoaAZHQJDdnEXLvCxoB03oA2gIR0CuLJ/xc3VDdX2UKGgGR0CW3OmPYFq0aAdN6ANoCEdArjASEi+tbXV9lChoBkdAlW7hBZ6lcmgHTegDaAhHQK4z40u14Ph1fZQoaAZHQJfygV58jRloB03oA2gIR0CuNvJ6Y3NtdX2UKGgGR0CX4jzdUKiPaAdN6ANoCEdArjr+3azu4XV9lChoBkdAl7yk/bCaZ2gHTegDaAhHQK5AaGlhw2l1fZQoaAZHQJboLdepn6FoB03oA2gIR0CuRLPomoitdX2UKGgGR0CXhXcZLqUvaAdN6ANoCEdArkevDP4VRHV9lChoBkdAlwRGXsw+MmgHTegDaAhHQK5K/wo9cKR1fZQoaAZHQJdI6/Yao/BoB03oA2gIR0CuTl1hLGrCdX2UKGgGR0CYkOVFx4puaAdN6ANoCEdArlJLDAJswnV9lChoBkdAlV19Tgl4T2gHTegDaAhHQK5VSNIbwSd1fZQoaAZHQJbIS6wt8NRoB03oA2gIR0CuWmcz67/XdX2UKGgGR0CS0BnezlcRaAdN6ANoCEdArl8g/Vy3kXV9lChoBkdAk71tSQ5my2gHTegDaAhHQK5i79n9Nvh1fZQoaAZHQJH6Dl/6O5toB03oA2gIR0CuZeX+l0o0dX2UKGgGR0CVEXfq5byIaAdN6ANoCEdArmlKoMrmQ3V9lChoBkdAk0Mw+MZP22gHTegDaAhHQK5sqcFQl8h1fZQoaAZHQJXLVWyTpxFoB03oA2gIR0CucGpDE3sHdX2UKGgGR0CVsaTvAoG6aAdN6ANoCEdArnRvgrH2iHV9lChoBkdAk8xQe3hGY2gHTegDaAhHQK55vvnbItF1fZQoaAZHQJieg8fV7QdoB03oA2gIR0CufSZi/fwadX2UKGgGR0CVT4oW56MSaAdN6ANoCEdAroD8mv4dqHV9lChoBkdAlWj5QUHpr2gHTegDaAhHQK6D5MqSX+l1fZQoaAZHQJQN+CNCJGhoB03oA2gIR0Cuhzha1TisdX2UKGgGR0CWA0idrftQaAdN6ANoCEdAroqbpu/DcnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94964eb422a8ab79d3f12595d73f7ea6826678852b2f3140330bec0286f7f42b
3
+ size 1096485
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1364.781250627269, "std_reward": 62.29447420356995, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T01:08:29.287754"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fbae50a05b74e571beab272041c9efd8bb93fc6723896064a04bbe2c0cf2d3f
3
+ size 2176