Faisal AlKhateeb
commited on
Commit
·
2f32550
1
Parent(s):
68be314
added support for position interpolation
Browse files- README.md +29 -0
- configuration_btlm.py +36 -0
- modeling_btlm.py +14 -3
README.md
CHANGED
@@ -162,6 +162,35 @@ Ensure the following muP parameters are passed in your config, otherwise your mo
|
|
162 |
- `mup_output_alpha: <float>`
|
163 |
- `mup_scale_qk_dot_by_d: true`
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
## Uses and Limitations
|
166 |
|
167 |
### Intended Use
|
|
|
162 |
- `mup_output_alpha: <float>`
|
163 |
- `mup_scale_qk_dot_by_d: true`
|
164 |
|
165 |
+
## To extend the context length with Position Interpolation
|
166 |
+
|
167 |
+
### During inference (without fine-tuning):
|
168 |
+
It's possible to extend the context length to 2x the training context length without degradation in performance using dynamic linear scaling. Dynamic linear scaling adjusts the slopes of ALiBi with a factor of `input_seq_len/train_seq_len` when `input_seq_len` is larger than `train_seq_len`. Check the details in our paper [Position Interpolation Improves ALiBi Extrapolation](https://arxiv.org/abs/2310.13017). To enable dynamic linear scaling, update `config.json` as follows:
|
169 |
+
```json
|
170 |
+
# update `n_positions` with the maximum context length will be
|
171 |
+
# encountered during inference (e.g. 16384 tokens)
|
172 |
+
"n_positions": 16384,
|
173 |
+
|
174 |
+
# specify `train_seq_len` in `alibi_scaling` parameter
|
175 |
+
"alibi_scaling": {
|
176 |
+
"type": "linear",
|
177 |
+
"train_seq_len": 8192
|
178 |
+
}
|
179 |
+
```
|
180 |
+
|
181 |
+
### Using fine-tuning + position interpolation:
|
182 |
+
Performing fine-tuning with position interpolation can help achieve greater extrapolation lengths. The scaling factor should be fixed to `finetuning_seq_len/train_seq_len`. To enable fixed linear scaling, update `config.json` as follows:
|
183 |
+
```json
|
184 |
+
# update `n_positions` with the fine-tuning context length (e.g. 32768 tokens)
|
185 |
+
"n_positions": 32768,
|
186 |
+
|
187 |
+
# specify the scaling `factor` in `alibi_scaling` parameter
|
188 |
+
"alibi_scaling": {
|
189 |
+
"type": "linear",
|
190 |
+
"factor": 4.0
|
191 |
+
}
|
192 |
+
```
|
193 |
+
|
194 |
## Uses and Limitations
|
195 |
|
196 |
### Intended Use
|
configuration_btlm.py
CHANGED
@@ -84,6 +84,12 @@ class BTLMConfig(PretrainedConfig):
|
|
84 |
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
|
85 |
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
86 |
scale_attn_weights to `True` as well.
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
Example:
|
89 |
|
@@ -134,6 +140,7 @@ class BTLMConfig(PretrainedConfig):
|
|
134 |
mup_embeddings_scale=1.0,
|
135 |
mup_output_alpha=1.0,
|
136 |
mup_scale_qk_dot_by_d=False,
|
|
|
137 |
**kwargs,
|
138 |
):
|
139 |
self.vocab_size = vocab_size
|
@@ -162,4 +169,33 @@ class BTLMConfig(PretrainedConfig):
|
|
162 |
self.mup_output_alpha = mup_output_alpha
|
163 |
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
|
164 |
|
|
|
|
|
|
|
165 |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
|
85 |
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
86 |
scale_attn_weights to `True` as well.
|
87 |
+
alibi_scaling (`Dict`, *optional*):
|
88 |
+
Dictionary containing the scaling configuration for ALiBi embeddings. Currently only supports linear
|
89 |
+
scaling strategy. Can specify either the scaling `factor` (must be a float greater than 1) for fixed scaling
|
90 |
+
or `train_seq_len` for dynamic scaling on input samples with sequence length > `train_seq_len`. The expected
|
91 |
+
formats are `{"type": strategy name, "factor": scaling factor}` or
|
92 |
+
`{"type": strategy name, "train_seq_len": training sequence length}`.
|
93 |
|
94 |
Example:
|
95 |
|
|
|
140 |
mup_embeddings_scale=1.0,
|
141 |
mup_output_alpha=1.0,
|
142 |
mup_scale_qk_dot_by_d=False,
|
143 |
+
alibi_scaling=None,
|
144 |
**kwargs,
|
145 |
):
|
146 |
self.vocab_size = vocab_size
|
|
|
169 |
self.mup_output_alpha = mup_output_alpha
|
170 |
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
|
171 |
|
172 |
+
self.alibi_scaling = alibi_scaling
|
173 |
+
self._alibi_scaling_validation()
|
174 |
+
|
175 |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
176 |
+
|
177 |
+
def _alibi_scaling_validation(self):
|
178 |
+
"""
|
179 |
+
Validate the `alibi_scaling` configuration.
|
180 |
+
"""
|
181 |
+
if self.alibi_scaling is None:
|
182 |
+
return
|
183 |
+
|
184 |
+
if not isinstance(self.alibi_scaling, dict) or len(self.alibi_scaling) != 2:
|
185 |
+
raise ValueError(
|
186 |
+
"`alibi_scaling` must be a dictionary with two fields, `type` and `factor` or `type` and `train_seq_len`, "
|
187 |
+
f"got {self.alibi_scaling}"
|
188 |
+
)
|
189 |
+
alibi_scaling_type = self.alibi_scaling.get("type", None)
|
190 |
+
alibi_scaling_factor = self.alibi_scaling.get("factor", None)
|
191 |
+
alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None)
|
192 |
+
if alibi_scaling_type is None or alibi_scaling_type != "linear":
|
193 |
+
raise ValueError(
|
194 |
+
f"`alibi_scaling`'s type field must be 'linear', got {alibi_scaling_type}"
|
195 |
+
)
|
196 |
+
if alibi_scaling_factor is not None:
|
197 |
+
if not isinstance(alibi_scaling_factor, float) or alibi_scaling_factor <= 1.0:
|
198 |
+
raise ValueError(f"`alibi_scaling`'s factor field must be a float > 1.0, got {alibi_scaling_factor}")
|
199 |
+
if alibi_dynamic_scaling is not None:
|
200 |
+
if not isinstance(alibi_dynamic_scaling, int) or alibi_dynamic_scaling <= 1:
|
201 |
+
raise ValueError(f"`alibi_scaling`'s `train_seq_len` field must be an integer > 1, got {alibi_dynamic_scaling}")
|
modeling_btlm.py
CHANGED
@@ -63,10 +63,11 @@ class SwiGLUActivation(nn.Module):
|
|
63 |
|
64 |
|
65 |
class AlibiPositionEmbeddingLayer(nn.Module):
|
66 |
-
def __init__(self, num_heads):
|
67 |
super(AlibiPositionEmbeddingLayer, self).__init__()
|
68 |
|
69 |
self.num_heads = num_heads
|
|
|
70 |
slopes = torch.tensor(AlibiPositionEmbeddingLayer._get_alibi_slopes(num_heads)).unsqueeze(-1)
|
71 |
self.slopes = nn.parameter.Parameter(slopes, requires_grad=False)
|
72 |
|
@@ -84,7 +85,17 @@ class AlibiPositionEmbeddingLayer(nn.Module):
|
|
84 |
)[None, :]
|
85 |
relative_position = memory_position - context_position
|
86 |
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.num_heads, -1, -1)
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
return alibi
|
89 |
|
90 |
@staticmethod
|
@@ -766,7 +777,7 @@ class BTLMModel(BTLMPreTrainedModel):
|
|
766 |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
767 |
|
768 |
self.relative_pe = (
|
769 |
-
AlibiPositionEmbeddingLayer(config.num_attention_heads)
|
770 |
if config.position_embedding_type == "alibi"
|
771 |
else None
|
772 |
)
|
|
|
63 |
|
64 |
|
65 |
class AlibiPositionEmbeddingLayer(nn.Module):
|
66 |
+
def __init__(self, num_heads, alibi_scaling=None):
|
67 |
super(AlibiPositionEmbeddingLayer, self).__init__()
|
68 |
|
69 |
self.num_heads = num_heads
|
70 |
+
self.alibi_scaling = alibi_scaling
|
71 |
slopes = torch.tensor(AlibiPositionEmbeddingLayer._get_alibi_slopes(num_heads)).unsqueeze(-1)
|
72 |
self.slopes = nn.parameter.Parameter(slopes, requires_grad=False)
|
73 |
|
|
|
85 |
)[None, :]
|
86 |
relative_position = memory_position - context_position
|
87 |
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.num_heads, -1, -1)
|
88 |
+
|
89 |
+
if self.alibi_scaling is None:
|
90 |
+
scale = 1.0
|
91 |
+
elif self.alibi_scaling.get("factor") is not None:
|
92 |
+
scale = self.alibi_scaling["factor"]
|
93 |
+
elif relative_position.shape[-1] > self.alibi_scaling["train_seq_len"]:
|
94 |
+
scale = relative_position.shape[-1] / self.alibi_scaling["train_seq_len"]
|
95 |
+
else:
|
96 |
+
scale = 1.0
|
97 |
+
|
98 |
+
alibi = (self.slopes / -scale).unsqueeze(1) * relative_position
|
99 |
return alibi
|
100 |
|
101 |
@staticmethod
|
|
|
777 |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
778 |
|
779 |
self.relative_pe = (
|
780 |
+
AlibiPositionEmbeddingLayer(config.num_attention_heads, config.alibi_scaling)
|
781 |
if config.position_embedding_type == "alibi"
|
782 |
else None
|
783 |
)
|