--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased_finetuned_text_2_disease_cel results: [] --- # distilbert-base-uncased_finetuned_text_2_disease_cel This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2732 - Accuracy: 0.9865 - F1: 0.9864 - Recall: 0.9865 - Precision: 0.9879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 1.3868 | 1.0 | 167 | 1.1692 | 0.8649 | 0.8458 | 0.8649 | 0.8573 | | 0.5345 | 2.0 | 334 | 0.4214 | 0.9745 | 0.9736 | 0.9745 | 0.9769 | | 0.3472 | 3.0 | 501 | 0.2732 | 0.9865 | 0.9864 | 0.9865 | 0.9879 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2