--- library_name: transformers base_model: None tags: - generated_from_trainer model-index: - name: trial2 results: [] license: apache-2.0 --- ## mistral-2b-base Welcome to my model card! This Model feature is ... - trained by japanese - trained in two stages: patch level and token level - Suppression of unknown word generation by using byte fallback in SentencePiece tokenizer and conversion to huggingface Tokenizers format - Use of Mistral 2B Yukkuri shite ittene! ## How to use the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_path = "ce-lery/mistral-2b-base" torch.set_float32_matmul_precision('high') device = "cuda" if (device != "cuda" and device != "cpu"): device = "cpu" tokenizer = AutoTokenizer.from_pretrained(model_path,use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, ).to(device) prompt = "自然言語処理とは、" inputs = tokenizer(prompt, add_special_tokens=True, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( inputs["input_ids"], max_new_tokens=4096, do_sample=True, early_stopping=False, top_p=0.95, top_k=50, temperature=0.7, no_repeat_ngram_size=2, num_beams=3 ) print(outputs.tolist()[0]) outputs_txt = tokenizer.decode(outputs[0]) print(outputs_txt) ``` ## Training and evaluation data 40B token. The contents are following. - Wikipedia - Wikibooks - Wikiversity - CC-100 - OSCAR2109 - mC4 (head 150GB) ## Training procedure Please refer [ce-lery/mistral-2b-recipe](https://github.com/ce-lery/mistral-2b-recipe). The Guide for this repository is published [here](). It is written in Japanese. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 256 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_min_lr - lr_scheduler_warmup_steps: 1000 - num_epochs: 1.0 ### Training results Please refer [here](https://huggingface.co./ce-lery/mistral-2b-base/tensorboard). ### Framework versions - Transformers 4.46.2 - Pytorch 2.4.0a0+f70bd71a48.nv24.06 - Datasets 2.20.0 - Tokenizers 0.20.3