File size: 2,826 Bytes
aad3a70 ddd7d53 aad3a70 ddd7d53 aad3a70 ddd7d53 aad3a70 ddd7d53 aad3a70 ddd7d53 036c9a3 ddd7d53 983ac63 ddd7d53 983ac63 ddd7d53 aad3a70 1dcd241 aad3a70 1dcd241 aad3a70 1dcd241 ddd7d53 31b6263 1dcd241 ddd7d53 aad3a70 8e93147 aad3a70 ddd7d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
library_name: transformers
base_model: None
tags:
- generated_from_trainer
model-index:
- name: trial2
results: []
license: apache-2.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
## mistral-2b-base
Welcome to my model card!
This Model feature is ...
- trained by japanese
- trained in two stages: patch level and token level
- Suppression of unknown word generation by using byte fallback in SentencePiece tokenizer and conversion to huggingface Tokenizers format
- Use of Mistral 2B
Yukkuri shite ittene!
<!-- ## Intended uses & limitations
More information needed
-->
## How to use the model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_path = "ce-lery/mistral-2b-base"
torch.set_float32_matmul_precision('high')
device = "cuda"
if (device != "cuda" and device != "cpu"):
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_path,use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
).to(device)
prompt = "自然言語処理とは、"
inputs = tokenizer(prompt,
add_special_tokens=True,
return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=4096,
do_sample=True,
early_stopping=False,
top_p=0.95,
top_k=50,
temperature=0.7,
no_repeat_ngram_size=2,
num_beams=3
)
print(outputs.tolist()[0])
outputs_txt = tokenizer.decode(outputs[0])
print(outputs_txt)
```
## Training and evaluation data
40B token. The contents are following.
- Wikipedia
- Wikibooks
- Wikiversity
- CC-100
- OSCAR2109
- mC4 (head 150GB)
## Training procedure
Please refer [ce-lery/mistral-2b-recipe](https://github.com/ce-lery/mistral-2b-recipe).
The Guide for this repository is published [here](). It is written in Japanese.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 128
- total_train_batch_size: 256
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0
### Training results
Please refer [here](https://huggingface.co./ce-lery/mistral-2b-base/tensorboard).
### Framework versions
- Transformers 4.46.2
- Pytorch 2.4.0a0+f70bd71a48.nv24.06
- Datasets 2.20.0
- Tokenizers 0.20.3 |