--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: distilbert-base-uncased metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9488 - Accuracy: {'accuracy': 0.889} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 125 | 0.3898 | {'accuracy': 0.888} | | No log | 2.0 | 250 | 0.5789 | {'accuracy': 0.865} | | No log | 3.0 | 375 | 0.5372 | {'accuracy': 0.889} | | 0.1772 | 4.0 | 500 | 0.6432 | {'accuracy': 0.891} | | 0.1772 | 5.0 | 625 | 0.8819 | {'accuracy': 0.889} | | 0.1772 | 6.0 | 750 | 0.9567 | {'accuracy': 0.883} | | 0.1772 | 7.0 | 875 | 0.9547 | {'accuracy': 0.891} | | 0.0207 | 8.0 | 1000 | 0.9466 | {'accuracy': 0.895} | | 0.0207 | 9.0 | 1125 | 0.9615 | {'accuracy': 0.892} | | 0.0207 | 10.0 | 1250 | 0.9488 | {'accuracy': 0.889} | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1