Upload 13 files
Browse files- README.md +34 -0
- config.json +40 -0
- configuration_qwen.py +65 -0
- generation_config.json +16 -0
- logo.png +0 -0
- mdl +0 -0
- modeling_qwen.py +1232 -0
- msc +0 -0
- pytorch_model.bin.index.json +266 -0
- qwen.tiktoken +0 -0
- qwen_generation_utils.py +416 -0
- tokenization_qwen.py +246 -0
- tokenizer_config.json +13 -0
README.md
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 荀子系列大语言模型
|
2 |
+
|
3 |
+
随着科技的飞速发展,人工智能已深入到各个领域。为响应古籍活化利用号召,推动大语言模型与古籍处理深度融合,以古籍智能化的研究为目的,本项目推出了一系列古籍处理领域大语言模型:荀子古籍大语言模型。荀子不仅是我国先秦时期伟大的朴素唯物主义的思想家,也是一位散文大家。他在语言学理论的阐述上又是一位开拓者、奠基人。荀子系列专为古籍智能处理而设计,这一系列模型的推出将推动古籍研究与保护工作的新发展,提高中华传统文化传承的效率与质量。
|
4 |
+
|
5 |
+
本次荀子系列模型开源包括两个部分:基座模型[**XunziALLM**](https://modelscope.cn/models/Xunzillm4cc/Xunzi-Qwen)与对话模型[**XunziChat**](https://modelscope.cn/models/Xunzillm4cc/Xunzi-Qwen-Chat),模型的调用方式与阿里云的Qwen系列大模型一致。
|
6 |
+
|
7 |
+
## 荀子系列模型亮点:
|
8 |
+
|
9 |
+
* 古籍智能标引,荀子模型具备强大的古籍文献标引能力,能够对古籍中的内容进行高质量主题标引,帮助研究人员快速了解文章主题。
|
10 |
+
|
11 |
+
* 古籍信息抽取,荀子模型能够自动从古籍中抽取关键信息,如人物、事件、地点等,大大节省了研究人员的信息整理时间。
|
12 |
+
|
13 |
+
* 诗歌生成:荀子模型还具备诗歌生成的能力,能够根据给定的主题或关键词,自动生成符合语法规则和韵律要求的古诗,为诗词爱好者提供创作灵感。
|
14 |
+
|
15 |
+
* 古籍高质量翻译:对于那些难以理解的古籍文献,荀子模型能够提供高质量的翻译服务,帮助研究人员更好地理解原文含义。
|
16 |
+
|
17 |
+
* 阅读理解:荀子模型能够对给出的古文文本进行分析解释,实现对古籍文本的自动阅读。
|
18 |
+
|
19 |
+
* 词法分析:荀子模型可以完成古籍文本的自动分词和词性标注,能够有效提升语言学工作者的研究效率。
|
20 |
+
|
21 |
+
* 自动标点:荀子大模型可以快速完成古籍文本的断句和标点,提升研究者以及业余爱好者对古籍文本的阅读体验。
|
22 |
+
|
23 |
+
由于我们同时发布了基座模型,用户也可以根据自己的需求,使用本地的训练语料微调荀子基座模型,使得其能够在古籍下游处理任务上取得更佳的处理性能。
|
24 |
+
|
25 |
+
## 声明:
|
26 |
+
|
27 |
+
大语言模型庞大的参数量也带来了更多的随机性,虽然我们在训练数据选取时已经尽可能保证了数据的合规性,但由于数据和模型的复杂性,仍有可能存在一些无法避免的问题。因此,如果由于使用本开源模型而导致的各种问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
|
28 |
+
|
29 |
+
此外,根据国家网信办等七部门联合发布的[《生成式人工智能服务管理暂行办法》](http://www.cac.gov.cn/2023-07/13/c_1690898327029107.htm),在训练、使用本模型以及其他生成式模型,请依据相关法律法规,为构建和谐、健康、可持续的生成式人工智能社区共同努力。
|
30 |
+
因此,如果由于使用本开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
|
31 |
+
|
32 |
+
如果您在使用模型时遇到了任何问题,欢迎联系我们([email protected])
|
33 |
+
```bash
|
34 |
+
git clone https://www.modelscope.cn/Xunzillm4cc/Xunzi-Qwen-Chat.git
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/gpuall/pretrained_models/Qwen_final/",
|
3 |
+
"architectures": [
|
4 |
+
"QWenLMHeadModel"
|
5 |
+
],
|
6 |
+
"attn_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_qwen.QWenConfig",
|
9 |
+
"AutoModel": "modeling_qwen.QWenLMHeadModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
|
11 |
+
},
|
12 |
+
"bf16": false,
|
13 |
+
"emb_dropout_prob": 0.0,
|
14 |
+
"fp16": true,
|
15 |
+
"fp32": false,
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 22016,
|
19 |
+
"kv_channels": 128,
|
20 |
+
"layer_norm_epsilon": 1e-06,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"model_type": "qwen",
|
23 |
+
"no_bias": true,
|
24 |
+
"num_attention_heads": 32,
|
25 |
+
"num_hidden_layers": 32,
|
26 |
+
"onnx_safe": null,
|
27 |
+
"rotary_emb_base": 10000,
|
28 |
+
"rotary_pct": 1.0,
|
29 |
+
"scale_attn_weights": true,
|
30 |
+
"seq_length": 2048,
|
31 |
+
"tie_word_embeddings": false,
|
32 |
+
"tokenizer_type": "QWenTokenizer",
|
33 |
+
"torch_dtype": "float16",
|
34 |
+
"transformers_version": "4.32.0",
|
35 |
+
"use_cache": true,
|
36 |
+
"use_dynamic_ntk": true,
|
37 |
+
"use_flash_attn": false,
|
38 |
+
"use_logn_attn": true,
|
39 |
+
"vocab_size": 151936
|
40 |
+
}
|
configuration_qwen.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from transformers import PretrainedConfig
|
7 |
+
|
8 |
+
|
9 |
+
class QWenConfig(PretrainedConfig):
|
10 |
+
model_type = "qwen"
|
11 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
vocab_size=151936,
|
16 |
+
hidden_size=4096,
|
17 |
+
num_hidden_layers=32,
|
18 |
+
num_attention_heads=32,
|
19 |
+
emb_dropout_prob=0.0,
|
20 |
+
attn_dropout_prob=0.0,
|
21 |
+
layer_norm_epsilon=1e-6,
|
22 |
+
initializer_range=0.02,
|
23 |
+
max_position_embeddings=8192,
|
24 |
+
scale_attn_weights=True,
|
25 |
+
use_cache=True,
|
26 |
+
bf16=False,
|
27 |
+
fp16=False,
|
28 |
+
fp32=False,
|
29 |
+
kv_channels=128,
|
30 |
+
rotary_pct=1.0,
|
31 |
+
rotary_emb_base=10000,
|
32 |
+
use_dynamic_ntk=True,
|
33 |
+
use_logn_attn=True,
|
34 |
+
use_flash_attn="auto",
|
35 |
+
intermediate_size=22016,
|
36 |
+
no_bias=True,
|
37 |
+
tie_word_embeddings=False,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.hidden_size = hidden_size
|
42 |
+
self.intermediate_size = intermediate_size
|
43 |
+
self.num_hidden_layers = num_hidden_layers
|
44 |
+
self.num_attention_heads = num_attention_heads
|
45 |
+
self.emb_dropout_prob = emb_dropout_prob
|
46 |
+
self.attn_dropout_prob = attn_dropout_prob
|
47 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
48 |
+
self.initializer_range = initializer_range
|
49 |
+
self.scale_attn_weights = scale_attn_weights
|
50 |
+
self.use_cache = use_cache
|
51 |
+
self.max_position_embeddings = max_position_embeddings
|
52 |
+
self.bf16 = bf16
|
53 |
+
self.fp16 = fp16
|
54 |
+
self.fp32 = fp32
|
55 |
+
self.kv_channels = kv_channels
|
56 |
+
self.rotary_pct = rotary_pct
|
57 |
+
self.rotary_emb_base = rotary_emb_base
|
58 |
+
self.use_dynamic_ntk = use_dynamic_ntk
|
59 |
+
self.use_logn_attn = use_logn_attn
|
60 |
+
self.use_flash_attn = use_flash_attn
|
61 |
+
self.no_bias = no_bias
|
62 |
+
super().__init__(
|
63 |
+
tie_word_embeddings=tie_word_embeddings,
|
64 |
+
**kwargs
|
65 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_format": "chatml",
|
3 |
+
"do_sample": true,
|
4 |
+
"max_new_tokens":512,
|
5 |
+
"eos_token_id": 151643,
|
6 |
+
"pad_token_id": 151643,
|
7 |
+
"max_window_size":6144,
|
8 |
+
"stop_words_ids": [
|
9 |
+
[
|
10 |
+
151643
|
11 |
+
]
|
12 |
+
],
|
13 |
+
"top_k": 0,
|
14 |
+
"top_p": 0.8,
|
15 |
+
"transformers_version": "4.32.0"
|
16 |
+
}
|
logo.png
ADDED
mdl
ADDED
Binary file (50 Bytes). View file
|
|
modeling_qwen.py
ADDED
@@ -0,0 +1,1232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import importlib
|
7 |
+
import math
|
8 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch.cuda.amp import autocast
|
14 |
+
|
15 |
+
from torch.nn import CrossEntropyLoss
|
16 |
+
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
17 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from transformers.generation.streamers import BaseStreamer
|
21 |
+
from transformers.generation.utils import GenerateOutput
|
22 |
+
from transformers.modeling_outputs import (
|
23 |
+
BaseModelOutputWithPast,
|
24 |
+
CausalLMOutputWithPast,
|
25 |
+
)
|
26 |
+
from transformers.modeling_utils import PreTrainedModel
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
try:
|
30 |
+
from einops import rearrange
|
31 |
+
except ImportError:
|
32 |
+
rearrange = None
|
33 |
+
from torch import nn
|
34 |
+
|
35 |
+
SUPPORT_CUDA = torch.cuda.is_available()
|
36 |
+
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
|
37 |
+
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
|
38 |
+
|
39 |
+
from .configuration_qwen import QWenConfig
|
40 |
+
from .qwen_generation_utils import (
|
41 |
+
HistoryType,
|
42 |
+
make_context,
|
43 |
+
decode_tokens,
|
44 |
+
get_stop_words_ids,
|
45 |
+
StopWordsLogitsProcessor,
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "qwen"
|
52 |
+
_CONFIG_FOR_DOC = "QWenConfig"
|
53 |
+
|
54 |
+
QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
|
55 |
+
|
56 |
+
_ERROR_BAD_CHAT_FORMAT = """\
|
57 |
+
We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
|
58 |
+
If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
|
59 |
+
我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
|
60 |
+
如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
|
61 |
+
"""
|
62 |
+
|
63 |
+
_SENTINEL = object()
|
64 |
+
_ERROR_STREAM_IN_CHAT = """\
|
65 |
+
Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
|
66 |
+
向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
|
67 |
+
"""
|
68 |
+
|
69 |
+
_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
|
70 |
+
We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
|
71 |
+
检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
|
72 |
+
"""
|
73 |
+
|
74 |
+
apply_rotary_emb_func = None
|
75 |
+
rms_norm = None
|
76 |
+
flash_attn_unpadded_func = None
|
77 |
+
|
78 |
+
|
79 |
+
def _import_flash_attn():
|
80 |
+
global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
|
81 |
+
try:
|
82 |
+
from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
|
83 |
+
apply_rotary_emb_func = __apply_rotary_emb_func
|
84 |
+
except ImportError:
|
85 |
+
logger.warn(
|
86 |
+
"Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
|
87 |
+
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
|
88 |
+
)
|
89 |
+
|
90 |
+
try:
|
91 |
+
from flash_attn.ops.rms_norm import rms_norm as __rms_norm
|
92 |
+
rms_norm = __rms_norm
|
93 |
+
except ImportError:
|
94 |
+
logger.warn(
|
95 |
+
"Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
|
96 |
+
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
|
97 |
+
)
|
98 |
+
|
99 |
+
try:
|
100 |
+
import flash_attn
|
101 |
+
if not hasattr(flash_attn, '__version__'):
|
102 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
103 |
+
else:
|
104 |
+
if int(flash_attn.__version__.split(".")[0]) >= 2:
|
105 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
|
106 |
+
else:
|
107 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
108 |
+
flash_attn_unpadded_func = __flash_attn_unpadded_func
|
109 |
+
except ImportError:
|
110 |
+
logger.warn(
|
111 |
+
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
|
112 |
+
"https://github.com/Dao-AILab/flash-attention"
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
class FlashSelfAttention(torch.nn.Module):
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
causal=False,
|
120 |
+
softmax_scale=None,
|
121 |
+
attention_dropout=0.0,
|
122 |
+
):
|
123 |
+
super().__init__()
|
124 |
+
assert flash_attn_unpadded_func is not None, (
|
125 |
+
"Please install FlashAttention first, " "e.g., with pip install flash-attn"
|
126 |
+
)
|
127 |
+
assert (
|
128 |
+
rearrange is not None
|
129 |
+
), "Please install einops first, e.g., with pip install einops"
|
130 |
+
self.causal = causal
|
131 |
+
self.softmax_scale = softmax_scale
|
132 |
+
self.dropout_p = attention_dropout
|
133 |
+
|
134 |
+
def forward(self, q, k, v):
|
135 |
+
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
|
136 |
+
assert all((i.is_cuda for i in (q, k, v)))
|
137 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
138 |
+
seqlen_k = k.shape[1]
|
139 |
+
|
140 |
+
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
|
141 |
+
cu_seqlens_q = torch.arange(
|
142 |
+
0,
|
143 |
+
(batch_size + 1) * seqlen_q,
|
144 |
+
step=seqlen_q,
|
145 |
+
dtype=torch.int32,
|
146 |
+
device=q.device,
|
147 |
+
)
|
148 |
+
|
149 |
+
if self.training:
|
150 |
+
assert seqlen_k == seqlen_q
|
151 |
+
|
152 |
+
is_causal = self.causal
|
153 |
+
cu_seqlens_k = cu_seqlens_q
|
154 |
+
else:
|
155 |
+
is_causal = seqlen_q == seqlen_k
|
156 |
+
cu_seqlens_k = torch.arange(
|
157 |
+
0,
|
158 |
+
(batch_size + 1) * seqlen_k,
|
159 |
+
step=seqlen_k,
|
160 |
+
dtype=torch.int32,
|
161 |
+
device=q.device,
|
162 |
+
)
|
163 |
+
self.dropout_p = 0
|
164 |
+
|
165 |
+
output = flash_attn_unpadded_func(
|
166 |
+
q,
|
167 |
+
k,
|
168 |
+
v,
|
169 |
+
cu_seqlens_q,
|
170 |
+
cu_seqlens_k,
|
171 |
+
seqlen_q,
|
172 |
+
seqlen_k,
|
173 |
+
self.dropout_p,
|
174 |
+
softmax_scale=self.softmax_scale,
|
175 |
+
causal=is_causal,
|
176 |
+
)
|
177 |
+
|
178 |
+
new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
|
179 |
+
output = output.view(new_shape)
|
180 |
+
return output
|
181 |
+
|
182 |
+
|
183 |
+
class QWenAttention(nn.Module):
|
184 |
+
def __init__(self, config):
|
185 |
+
super().__init__()
|
186 |
+
|
187 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
188 |
+
self.seq_length = config.seq_length
|
189 |
+
|
190 |
+
self.hidden_size = config.hidden_size
|
191 |
+
self.split_size = config.hidden_size
|
192 |
+
self.num_heads = config.num_attention_heads
|
193 |
+
self.head_dim = self.hidden_size // self.num_heads
|
194 |
+
|
195 |
+
self.use_flash_attn = config.use_flash_attn
|
196 |
+
self.scale_attn_weights = True
|
197 |
+
|
198 |
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
199 |
+
|
200 |
+
assert self.projection_size % config.num_attention_heads == 0
|
201 |
+
self.hidden_size_per_attention_head = (
|
202 |
+
self.projection_size // config.num_attention_heads
|
203 |
+
)
|
204 |
+
|
205 |
+
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
|
206 |
+
|
207 |
+
self.c_proj = nn.Linear(
|
208 |
+
config.hidden_size, self.projection_size, bias=not config.no_bias
|
209 |
+
)
|
210 |
+
|
211 |
+
self.is_fp32 = not (config.bf16 or config.fp16)
|
212 |
+
if (
|
213 |
+
self.use_flash_attn
|
214 |
+
and flash_attn_unpadded_func is not None
|
215 |
+
and not self.is_fp32
|
216 |
+
):
|
217 |
+
self.core_attention_flash = FlashSelfAttention(
|
218 |
+
causal=True, attention_dropout=config.attn_dropout_prob
|
219 |
+
)
|
220 |
+
self.bf16 = config.bf16
|
221 |
+
|
222 |
+
self.use_dynamic_ntk = config.use_dynamic_ntk
|
223 |
+
self.use_logn_attn = config.use_logn_attn
|
224 |
+
|
225 |
+
logn_list = [
|
226 |
+
math.log(i, self.seq_length) if i > self.seq_length else 1
|
227 |
+
for i in range(1, 32768)
|
228 |
+
]
|
229 |
+
self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
|
230 |
+
|
231 |
+
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
232 |
+
|
233 |
+
def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
|
234 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
235 |
+
|
236 |
+
if self.scale_attn_weights:
|
237 |
+
attn_weights = attn_weights / torch.full(
|
238 |
+
[],
|
239 |
+
value.size(-1) ** 0.5,
|
240 |
+
dtype=attn_weights.dtype,
|
241 |
+
device=attn_weights.device,
|
242 |
+
)
|
243 |
+
|
244 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
245 |
+
causal_mask = registered_causal_mask[
|
246 |
+
:, :, key_length - query_length : key_length, :key_length
|
247 |
+
]
|
248 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
249 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
|
250 |
+
attn_weights.device
|
251 |
+
)
|
252 |
+
attn_weights = torch.where(
|
253 |
+
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
254 |
+
)
|
255 |
+
|
256 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
257 |
+
|
258 |
+
attn_weights = attn_weights.type(value.dtype)
|
259 |
+
attn_weights = self.attn_dropout(attn_weights)
|
260 |
+
|
261 |
+
if head_mask is not None:
|
262 |
+
attn_weights = attn_weights * head_mask
|
263 |
+
|
264 |
+
attn_output = torch.matmul(attn_weights, value)
|
265 |
+
attn_output = attn_output.transpose(1, 2)
|
266 |
+
|
267 |
+
return attn_output, attn_weights
|
268 |
+
|
269 |
+
def _upcast_and_reordered_attn(
|
270 |
+
self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
|
271 |
+
):
|
272 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
273 |
+
_, _, k_seq_len, _ = key.size()
|
274 |
+
|
275 |
+
attn_weights = torch.empty(
|
276 |
+
bsz * num_heads,
|
277 |
+
q_seq_len,
|
278 |
+
k_seq_len,
|
279 |
+
dtype=torch.float32,
|
280 |
+
device=query.device,
|
281 |
+
)
|
282 |
+
|
283 |
+
scale_factor = 1.0
|
284 |
+
if self.scale_attn_weights:
|
285 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
286 |
+
|
287 |
+
with autocast(enabled=False):
|
288 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
|
289 |
+
-1, dk, k_seq_len
|
290 |
+
)
|
291 |
+
attn_weights = torch.baddbmm(
|
292 |
+
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
|
293 |
+
)
|
294 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
295 |
+
|
296 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
297 |
+
causal_mask = registered_causal_mask[
|
298 |
+
:, :, key_length - query_length : key_length, :key_length
|
299 |
+
]
|
300 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
301 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
|
302 |
+
attn_weights.device
|
303 |
+
)
|
304 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
305 |
+
|
306 |
+
if attention_mask is not None:
|
307 |
+
attn_weights = attn_weights + attention_mask
|
308 |
+
|
309 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
310 |
+
|
311 |
+
if attn_weights.dtype != torch.float32:
|
312 |
+
raise RuntimeError(
|
313 |
+
"Error with upcasting, attn_weights does not have dtype torch.float32"
|
314 |
+
)
|
315 |
+
attn_weights = attn_weights.type(value.dtype)
|
316 |
+
attn_weights = self.attn_dropout(attn_weights)
|
317 |
+
|
318 |
+
if head_mask is not None:
|
319 |
+
attn_weights = attn_weights * head_mask
|
320 |
+
|
321 |
+
attn_output = torch.matmul(attn_weights, value)
|
322 |
+
|
323 |
+
return attn_output, attn_weights
|
324 |
+
|
325 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
326 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
327 |
+
tensor = tensor.view(new_shape)
|
328 |
+
return tensor
|
329 |
+
|
330 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
331 |
+
tensor = tensor.contiguous()
|
332 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
333 |
+
return tensor.view(new_shape)
|
334 |
+
|
335 |
+
def forward(
|
336 |
+
self,
|
337 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
338 |
+
rotary_pos_emb: Optional[List[torch.Tensor]] = None,
|
339 |
+
registered_causal_mask: Optional[torch.Tensor] = None,
|
340 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
341 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
342 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
343 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
344 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
345 |
+
output_attentions: Optional[bool] = False,
|
346 |
+
use_cache: Optional[bool] = False,
|
347 |
+
):
|
348 |
+
|
349 |
+
mixed_x_layer = self.c_attn(hidden_states)
|
350 |
+
|
351 |
+
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
352 |
+
|
353 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
354 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
355 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
356 |
+
|
357 |
+
if rotary_pos_emb is not None:
|
358 |
+
cur_len = query.shape[1]
|
359 |
+
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
360 |
+
rotary_pos_emb = (rotary_pos_emb,) * 2
|
361 |
+
q_pos_emb, k_pos_emb = rotary_pos_emb
|
362 |
+
# Slice the pos emb for current inference
|
363 |
+
query = apply_rotary_pos_emb(query, q_pos_emb)
|
364 |
+
key = apply_rotary_pos_emb(key, k_pos_emb)
|
365 |
+
|
366 |
+
if layer_past is not None:
|
367 |
+
past_key, past_value = layer_past[0], layer_past[1]
|
368 |
+
key = torch.cat((past_key, key), dim=1)
|
369 |
+
value = torch.cat((past_value, value), dim=1)
|
370 |
+
|
371 |
+
if use_cache:
|
372 |
+
present = (key, value)
|
373 |
+
else:
|
374 |
+
present = None
|
375 |
+
|
376 |
+
if self.use_logn_attn and not self.training:
|
377 |
+
if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
|
378 |
+
self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
|
379 |
+
seq_start = key.size(1) - query.size(1)
|
380 |
+
seq_end = key.size(1)
|
381 |
+
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
|
382 |
+
query = query * logn_tensor.expand_as(query)
|
383 |
+
|
384 |
+
if (
|
385 |
+
self.use_flash_attn
|
386 |
+
and flash_attn_unpadded_func is not None
|
387 |
+
and not self.is_fp32
|
388 |
+
and query.is_cuda
|
389 |
+
):
|
390 |
+
q, k, v = query, key, value
|
391 |
+
context_layer = self.core_attention_flash(q, k, v)
|
392 |
+
|
393 |
+
# b s h d -> b s (h d)
|
394 |
+
context_layer = context_layer.flatten(2,3).contiguous()
|
395 |
+
|
396 |
+
else:
|
397 |
+
query = query.permute(0, 2, 1, 3)
|
398 |
+
key = key.permute(0, 2, 1, 3)
|
399 |
+
value = value.permute(0, 2, 1, 3)
|
400 |
+
if (
|
401 |
+
registered_causal_mask is None
|
402 |
+
and self.use_flash_attn
|
403 |
+
and flash_attn_unpadded_func is not None
|
404 |
+
and not self.is_fp32
|
405 |
+
and not query.is_cuda
|
406 |
+
):
|
407 |
+
raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
|
408 |
+
attn_output, attn_weight = self._attn(
|
409 |
+
query, key, value, registered_causal_mask, attention_mask, head_mask
|
410 |
+
)
|
411 |
+
context_layer = self._merge_heads(
|
412 |
+
attn_output, self.num_heads, self.head_dim
|
413 |
+
)
|
414 |
+
|
415 |
+
attn_output = self.c_proj(context_layer)
|
416 |
+
|
417 |
+
outputs = (attn_output, present)
|
418 |
+
if output_attentions:
|
419 |
+
if (
|
420 |
+
self.use_flash_attn
|
421 |
+
and flash_attn_unpadded_func is not None
|
422 |
+
and not self.is_fp32
|
423 |
+
):
|
424 |
+
raise ValueError("Cannot output attentions while using flash-attn")
|
425 |
+
else:
|
426 |
+
outputs += (attn_weight,)
|
427 |
+
|
428 |
+
return outputs
|
429 |
+
|
430 |
+
|
431 |
+
class QWenMLP(nn.Module):
|
432 |
+
def __init__(self, config):
|
433 |
+
super().__init__()
|
434 |
+
self.w1 = nn.Linear(
|
435 |
+
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
|
436 |
+
)
|
437 |
+
self.w2 = nn.Linear(
|
438 |
+
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
|
439 |
+
)
|
440 |
+
ff_dim_in = config.intermediate_size // 2
|
441 |
+
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
|
442 |
+
|
443 |
+
def forward(self, hidden_states):
|
444 |
+
a1 = self.w1(hidden_states)
|
445 |
+
a2 = self.w2(hidden_states)
|
446 |
+
intermediate_parallel = a1 * F.silu(a2)
|
447 |
+
output = self.c_proj(intermediate_parallel)
|
448 |
+
return output
|
449 |
+
|
450 |
+
class QWenBlock(nn.Module):
|
451 |
+
def __init__(self, config):
|
452 |
+
super().__init__()
|
453 |
+
hidden_size = config.hidden_size
|
454 |
+
self.bf16 = config.bf16
|
455 |
+
|
456 |
+
self.ln_1 = RMSNorm(
|
457 |
+
hidden_size,
|
458 |
+
eps=config.layer_norm_epsilon,
|
459 |
+
)
|
460 |
+
self.attn = QWenAttention(config)
|
461 |
+
self.ln_2 = RMSNorm(
|
462 |
+
hidden_size,
|
463 |
+
eps=config.layer_norm_epsilon,
|
464 |
+
)
|
465 |
+
|
466 |
+
self.mlp = QWenMLP(config)
|
467 |
+
|
468 |
+
def forward(
|
469 |
+
self,
|
470 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
471 |
+
rotary_pos_emb: Optional[List[torch.Tensor]] = None,
|
472 |
+
registered_causal_mask: Optional[torch.Tensor] = None,
|
473 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
474 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
475 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
476 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
477 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
478 |
+
use_cache: Optional[bool] = False,
|
479 |
+
output_attentions: Optional[bool] = False,
|
480 |
+
):
|
481 |
+
layernorm_output = self.ln_1(hidden_states)
|
482 |
+
|
483 |
+
attn_outputs = self.attn(
|
484 |
+
layernorm_output,
|
485 |
+
rotary_pos_emb,
|
486 |
+
registered_causal_mask=registered_causal_mask,
|
487 |
+
layer_past=layer_past,
|
488 |
+
attention_mask=attention_mask,
|
489 |
+
head_mask=head_mask,
|
490 |
+
use_cache=use_cache,
|
491 |
+
output_attentions=output_attentions,
|
492 |
+
)
|
493 |
+
attn_output = attn_outputs[0]
|
494 |
+
|
495 |
+
outputs = attn_outputs[1:]
|
496 |
+
|
497 |
+
residual = hidden_states
|
498 |
+
layernorm_input = attn_output + residual
|
499 |
+
|
500 |
+
layernorm_output = self.ln_2(layernorm_input)
|
501 |
+
|
502 |
+
residual = layernorm_input
|
503 |
+
mlp_output = self.mlp(layernorm_output)
|
504 |
+
hidden_states = residual + mlp_output
|
505 |
+
|
506 |
+
if use_cache:
|
507 |
+
outputs = (hidden_states,) + outputs
|
508 |
+
else:
|
509 |
+
outputs = (hidden_states,) + outputs[1:]
|
510 |
+
|
511 |
+
return outputs
|
512 |
+
|
513 |
+
|
514 |
+
class QWenPreTrainedModel(PreTrainedModel):
|
515 |
+
config_class = QWenConfig
|
516 |
+
base_model_prefix = "transformer"
|
517 |
+
is_parallelizable = False
|
518 |
+
supports_gradient_checkpointing = True
|
519 |
+
_no_split_modules = ["QWenBlock"]
|
520 |
+
|
521 |
+
def __init__(self, *inputs, **kwargs):
|
522 |
+
super().__init__(*inputs, **kwargs)
|
523 |
+
|
524 |
+
def _init_weights(self, module):
|
525 |
+
"""Initialize the weights."""
|
526 |
+
if isinstance(module, nn.Linear):
|
527 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
528 |
+
if module.bias is not None:
|
529 |
+
module.bias.data.zero_()
|
530 |
+
elif isinstance(module, nn.Embedding):
|
531 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
532 |
+
if module.padding_idx is not None:
|
533 |
+
module.weight.data[module.padding_idx].zero_()
|
534 |
+
elif isinstance(module, RMSNorm):
|
535 |
+
module.weight.data.fill_(1.0)
|
536 |
+
|
537 |
+
for name, p in module.named_parameters():
|
538 |
+
if name == "c_proj.weight":
|
539 |
+
p.data.normal_(
|
540 |
+
mean=0.0,
|
541 |
+
std=(
|
542 |
+
self.config.initializer_range
|
543 |
+
/ math.sqrt(2 * self.config.num_hidden_layers)
|
544 |
+
),
|
545 |
+
)
|
546 |
+
|
547 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
548 |
+
if isinstance(module, QWenModel):
|
549 |
+
module.gradient_checkpointing = value
|
550 |
+
|
551 |
+
|
552 |
+
class QWenModel(QWenPreTrainedModel):
|
553 |
+
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
554 |
+
|
555 |
+
def __init__(self, config):
|
556 |
+
super().__init__(config)
|
557 |
+
self.vocab_size = config.vocab_size
|
558 |
+
self.num_hidden_layers = config.num_hidden_layers
|
559 |
+
self.embed_dim = config.hidden_size
|
560 |
+
|
561 |
+
self.gradient_checkpointing = False
|
562 |
+
self.use_dynamic_ntk = config.use_dynamic_ntk
|
563 |
+
self.seq_length = config.seq_length
|
564 |
+
|
565 |
+
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
566 |
+
|
567 |
+
self.drop = nn.Dropout(config.emb_dropout_prob)
|
568 |
+
|
569 |
+
if config.rotary_pct == 1.0:
|
570 |
+
self.rotary_ndims = None
|
571 |
+
else:
|
572 |
+
assert config.rotary_pct < 1
|
573 |
+
self.rotary_ndims = int(
|
574 |
+
config.kv_channels * config.rotary_pct
|
575 |
+
)
|
576 |
+
dim = (
|
577 |
+
self.rotary_ndims
|
578 |
+
if self.rotary_ndims is not None
|
579 |
+
else config.kv_channels
|
580 |
+
)
|
581 |
+
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
582 |
+
|
583 |
+
self.use_flash_attn = config.use_flash_attn
|
584 |
+
self.is_fp32 = not (config.bf16 or config.fp16)
|
585 |
+
if (
|
586 |
+
self.use_flash_attn
|
587 |
+
and flash_attn_unpadded_func is not None
|
588 |
+
and not self.is_fp32
|
589 |
+
):
|
590 |
+
self.registered_causal_mask = None
|
591 |
+
else:
|
592 |
+
max_positions = config.max_position_embeddings
|
593 |
+
self.register_buffer(
|
594 |
+
"registered_causal_mask",
|
595 |
+
torch.tril(
|
596 |
+
torch.ones((max_positions, max_positions), dtype=torch.bool)
|
597 |
+
).view(1, 1, max_positions, max_positions),
|
598 |
+
persistent=False,
|
599 |
+
)
|
600 |
+
|
601 |
+
self.h = nn.ModuleList(
|
602 |
+
[
|
603 |
+
QWenBlock(
|
604 |
+
config
|
605 |
+
)
|
606 |
+
for i in range(config.num_hidden_layers)
|
607 |
+
]
|
608 |
+
)
|
609 |
+
self.ln_f = RMSNorm(
|
610 |
+
self.embed_dim,
|
611 |
+
eps=config.layer_norm_epsilon,
|
612 |
+
)
|
613 |
+
|
614 |
+
self.post_init()
|
615 |
+
|
616 |
+
def get_input_embeddings(self):
|
617 |
+
return self.wte
|
618 |
+
|
619 |
+
def set_input_embeddings(self, new_embeddings):
|
620 |
+
self.wte = new_embeddings
|
621 |
+
|
622 |
+
def forward(
|
623 |
+
self,
|
624 |
+
input_ids: Optional[torch.LongTensor] = None,
|
625 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
626 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
627 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
628 |
+
position_ids: Optional[torch.LongTensor] = None,
|
629 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
630 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
631 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
632 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
633 |
+
use_cache: Optional[bool] = None,
|
634 |
+
output_attentions: Optional[bool] = None,
|
635 |
+
output_hidden_states: Optional[bool] = None,
|
636 |
+
return_dict: Optional[bool] = None,
|
637 |
+
):
|
638 |
+
output_attentions = (
|
639 |
+
output_attentions
|
640 |
+
if output_attentions is not None
|
641 |
+
else self.config.output_attentions
|
642 |
+
)
|
643 |
+
output_hidden_states = (
|
644 |
+
output_hidden_states
|
645 |
+
if output_hidden_states is not None
|
646 |
+
else self.config.output_hidden_states
|
647 |
+
)
|
648 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
649 |
+
return_dict = (
|
650 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
651 |
+
)
|
652 |
+
|
653 |
+
if input_ids is not None and inputs_embeds is not None:
|
654 |
+
raise ValueError(
|
655 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
656 |
+
)
|
657 |
+
elif input_ids is not None:
|
658 |
+
input_shape = input_ids.size()
|
659 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
660 |
+
batch_size = input_ids.shape[0]
|
661 |
+
elif inputs_embeds is not None:
|
662 |
+
input_shape = inputs_embeds.size()[:-1]
|
663 |
+
batch_size = inputs_embeds.shape[0]
|
664 |
+
else:
|
665 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
666 |
+
|
667 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
668 |
+
|
669 |
+
if token_type_ids is not None:
|
670 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
671 |
+
if position_ids is not None:
|
672 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
673 |
+
|
674 |
+
if past_key_values is None:
|
675 |
+
past_length = 0
|
676 |
+
past_key_values = tuple([None] * len(self.h))
|
677 |
+
else:
|
678 |
+
past_length = past_key_values[0][0].size(-2)
|
679 |
+
|
680 |
+
if position_ids is None:
|
681 |
+
position_ids = torch.arange(
|
682 |
+
past_length,
|
683 |
+
input_shape[-1] + past_length,
|
684 |
+
dtype=torch.long,
|
685 |
+
device=device,
|
686 |
+
)
|
687 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
688 |
+
|
689 |
+
if attention_mask is not None:
|
690 |
+
if batch_size <= 0:
|
691 |
+
raise ValueError("batch_size has to be defined and > 0")
|
692 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
693 |
+
attention_mask = attention_mask[:, None, None, :]
|
694 |
+
attention_mask = attention_mask.to(dtype=self.dtype)
|
695 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
696 |
+
|
697 |
+
encoder_attention_mask = None
|
698 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
699 |
+
|
700 |
+
if inputs_embeds is None:
|
701 |
+
inputs_embeds = self.wte(input_ids)
|
702 |
+
hidden_states = inputs_embeds
|
703 |
+
|
704 |
+
kv_seq_len = hidden_states.size()[1]
|
705 |
+
if past_key_values[0] is not None:
|
706 |
+
# past key values[0][0] shape: bs * seq_len * head_num * dim
|
707 |
+
kv_seq_len += past_key_values[0][0].shape[1]
|
708 |
+
if (
|
709 |
+
self.use_dynamic_ntk
|
710 |
+
and kv_seq_len == hidden_states.size()[1]
|
711 |
+
and not self.training
|
712 |
+
):
|
713 |
+
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
|
714 |
+
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
715 |
+
ntk_alpha = max(ntk_alpha, 1)
|
716 |
+
else:
|
717 |
+
ntk_alpha = self.rotary_emb._ntk_alpha_cached
|
718 |
+
|
719 |
+
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha)
|
720 |
+
for idx in range(len(rotary_pos_emb)):
|
721 |
+
rotary_pos_emb[idx] = rotary_pos_emb[idx].to(hidden_states.device)
|
722 |
+
|
723 |
+
hidden_states = self.drop(hidden_states)
|
724 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
725 |
+
|
726 |
+
if self.gradient_checkpointing and self.training:
|
727 |
+
if use_cache:
|
728 |
+
logger.warning_once(
|
729 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
730 |
+
)
|
731 |
+
use_cache = False
|
732 |
+
|
733 |
+
presents = () if use_cache else None
|
734 |
+
all_self_attentions = () if output_attentions else None
|
735 |
+
all_hidden_states = () if output_hidden_states else None
|
736 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
737 |
+
|
738 |
+
if output_hidden_states:
|
739 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
740 |
+
|
741 |
+
if self.gradient_checkpointing and self.training:
|
742 |
+
|
743 |
+
def create_custom_forward(module):
|
744 |
+
def custom_forward(*inputs):
|
745 |
+
# None for past_key_value
|
746 |
+
return module(*inputs, use_cache, output_attentions)
|
747 |
+
|
748 |
+
return custom_forward
|
749 |
+
|
750 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
751 |
+
create_custom_forward(block),
|
752 |
+
hidden_states,
|
753 |
+
rotary_pos_emb,
|
754 |
+
self.registered_causal_mask,
|
755 |
+
None,
|
756 |
+
attention_mask,
|
757 |
+
head_mask[i],
|
758 |
+
encoder_hidden_states,
|
759 |
+
encoder_attention_mask,
|
760 |
+
)
|
761 |
+
else:
|
762 |
+
outputs = block(
|
763 |
+
hidden_states,
|
764 |
+
layer_past=layer_past,
|
765 |
+
rotary_pos_emb=rotary_pos_emb,
|
766 |
+
registered_causal_mask=self.registered_causal_mask,
|
767 |
+
attention_mask=attention_mask,
|
768 |
+
head_mask=head_mask[i],
|
769 |
+
encoder_hidden_states=encoder_hidden_states,
|
770 |
+
encoder_attention_mask=encoder_attention_mask,
|
771 |
+
use_cache=use_cache,
|
772 |
+
output_attentions=output_attentions,
|
773 |
+
)
|
774 |
+
|
775 |
+
hidden_states = outputs[0]
|
776 |
+
if use_cache is True:
|
777 |
+
presents = presents + (outputs[1],)
|
778 |
+
|
779 |
+
if output_attentions:
|
780 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
781 |
+
|
782 |
+
hidden_states = self.ln_f(hidden_states)
|
783 |
+
hidden_states = hidden_states.view(output_shape)
|
784 |
+
# Add last hidden state
|
785 |
+
if output_hidden_states:
|
786 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
787 |
+
|
788 |
+
if not return_dict:
|
789 |
+
return tuple(
|
790 |
+
v for v in [hidden_states, presents, all_hidden_states] if v is not None
|
791 |
+
)
|
792 |
+
|
793 |
+
return BaseModelOutputWithPast(
|
794 |
+
last_hidden_state=hidden_states,
|
795 |
+
past_key_values=presents,
|
796 |
+
hidden_states=all_hidden_states,
|
797 |
+
attentions=all_self_attentions,
|
798 |
+
)
|
799 |
+
|
800 |
+
|
801 |
+
class QWenLMHeadModel(QWenPreTrainedModel):
|
802 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
|
803 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
|
804 |
+
|
805 |
+
def __init__(self, config):
|
806 |
+
super().__init__(config)
|
807 |
+
assert (
|
808 |
+
config.bf16 + config.fp16 + config.fp32 <= 1
|
809 |
+
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
|
810 |
+
|
811 |
+
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
|
812 |
+
|
813 |
+
if autoset_precision:
|
814 |
+
if SUPPORT_BF16:
|
815 |
+
logger.warn(
|
816 |
+
"The model is automatically converting to bf16 for faster inference. "
|
817 |
+
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
|
818 |
+
)
|
819 |
+
config.bf16 = True
|
820 |
+
elif SUPPORT_FP16:
|
821 |
+
logger.warn(
|
822 |
+
"The model is automatically converting to fp16 for faster inference. "
|
823 |
+
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
|
824 |
+
)
|
825 |
+
config.fp16 = True
|
826 |
+
else:
|
827 |
+
config.fp32 = True
|
828 |
+
|
829 |
+
if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
|
830 |
+
logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
|
831 |
+
if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
|
832 |
+
logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
|
833 |
+
if config.fp32:
|
834 |
+
if SUPPORT_BF16:
|
835 |
+
logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
|
836 |
+
elif SUPPORT_FP16:
|
837 |
+
logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
|
838 |
+
|
839 |
+
if config.use_flash_attn == "auto":
|
840 |
+
if config.bf16 or config.fp16:
|
841 |
+
logger.warn("Try importing flash-attention for faster inference...")
|
842 |
+
config.use_flash_attn = True
|
843 |
+
else:
|
844 |
+
config.use_flash_attn = False
|
845 |
+
if config.use_flash_attn and config.fp32:
|
846 |
+
logger.warn("Flash attention will be disabled because it does NOT support fp32.")
|
847 |
+
|
848 |
+
if config.use_flash_attn:
|
849 |
+
_import_flash_attn()
|
850 |
+
|
851 |
+
self.transformer = QWenModel(config)
|
852 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
853 |
+
|
854 |
+
if config.bf16:
|
855 |
+
self.transformer.bfloat16()
|
856 |
+
self.lm_head.bfloat16()
|
857 |
+
if config.fp16:
|
858 |
+
self.transformer.half()
|
859 |
+
self.lm_head.half()
|
860 |
+
self.post_init()
|
861 |
+
|
862 |
+
def get_output_embeddings(self):
|
863 |
+
return self.lm_head
|
864 |
+
|
865 |
+
def set_output_embeddings(self, new_embeddings):
|
866 |
+
self.lm_head = new_embeddings
|
867 |
+
|
868 |
+
def prepare_inputs_for_generation(
|
869 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
870 |
+
):
|
871 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
872 |
+
if past_key_values:
|
873 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
874 |
+
if token_type_ids is not None:
|
875 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
876 |
+
|
877 |
+
attention_mask = kwargs.get("attention_mask", None)
|
878 |
+
position_ids = kwargs.get("position_ids", None)
|
879 |
+
|
880 |
+
if attention_mask is not None and position_ids is None:
|
881 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
882 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
883 |
+
if past_key_values:
|
884 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
885 |
+
else:
|
886 |
+
position_ids = None
|
887 |
+
|
888 |
+
if inputs_embeds is not None and past_key_values is None:
|
889 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
890 |
+
else:
|
891 |
+
model_inputs = {"input_ids": input_ids}
|
892 |
+
|
893 |
+
model_inputs.update(
|
894 |
+
{
|
895 |
+
"past_key_values": past_key_values,
|
896 |
+
"use_cache": kwargs.get("use_cache"),
|
897 |
+
"position_ids": position_ids,
|
898 |
+
"attention_mask": attention_mask,
|
899 |
+
"token_type_ids": token_type_ids,
|
900 |
+
}
|
901 |
+
)
|
902 |
+
return model_inputs
|
903 |
+
|
904 |
+
def forward(
|
905 |
+
self,
|
906 |
+
input_ids: Optional[torch.LongTensor] = None,
|
907 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
908 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
909 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
910 |
+
position_ids: Optional[torch.LongTensor] = None,
|
911 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
912 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
913 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
914 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
915 |
+
labels: Optional[torch.LongTensor] = None,
|
916 |
+
use_cache: Optional[bool] = None,
|
917 |
+
output_attentions: Optional[bool] = None,
|
918 |
+
output_hidden_states: Optional[bool] = None,
|
919 |
+
return_dict: Optional[bool] = None,
|
920 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
921 |
+
|
922 |
+
return_dict = (
|
923 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
924 |
+
)
|
925 |
+
|
926 |
+
transformer_outputs = self.transformer(
|
927 |
+
input_ids,
|
928 |
+
past_key_values=past_key_values,
|
929 |
+
attention_mask=attention_mask,
|
930 |
+
token_type_ids=token_type_ids,
|
931 |
+
position_ids=position_ids,
|
932 |
+
head_mask=head_mask,
|
933 |
+
inputs_embeds=inputs_embeds,
|
934 |
+
encoder_hidden_states=encoder_hidden_states,
|
935 |
+
encoder_attention_mask=encoder_attention_mask,
|
936 |
+
use_cache=use_cache,
|
937 |
+
output_attentions=output_attentions,
|
938 |
+
output_hidden_states=output_hidden_states,
|
939 |
+
return_dict=return_dict,
|
940 |
+
)
|
941 |
+
hidden_states = transformer_outputs[0]
|
942 |
+
|
943 |
+
lm_logits = self.lm_head(hidden_states)
|
944 |
+
|
945 |
+
loss = None
|
946 |
+
if labels is not None:
|
947 |
+
labels = labels.to(lm_logits.device)
|
948 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
949 |
+
shift_labels = labels[..., 1:].contiguous()
|
950 |
+
loss_fct = CrossEntropyLoss()
|
951 |
+
loss = loss_fct(
|
952 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
953 |
+
)
|
954 |
+
|
955 |
+
if not return_dict:
|
956 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
957 |
+
return ((loss,) + output) if loss is not None else output
|
958 |
+
|
959 |
+
return CausalLMOutputWithPast(
|
960 |
+
loss=loss,
|
961 |
+
logits=lm_logits,
|
962 |
+
past_key_values=transformer_outputs.past_key_values,
|
963 |
+
hidden_states=transformer_outputs.hidden_states,
|
964 |
+
attentions=transformer_outputs.attentions,
|
965 |
+
)
|
966 |
+
|
967 |
+
@staticmethod
|
968 |
+
def _reorder_cache(
|
969 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
970 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
971 |
+
|
972 |
+
return tuple(
|
973 |
+
tuple(
|
974 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
975 |
+
for past_state in layer_past
|
976 |
+
)
|
977 |
+
for layer_past in past_key_values
|
978 |
+
)
|
979 |
+
|
980 |
+
def chat(
|
981 |
+
self,
|
982 |
+
tokenizer: PreTrainedTokenizer,
|
983 |
+
query: str,
|
984 |
+
history: Optional[HistoryType],
|
985 |
+
system: str = "You are a helpful assistant.",
|
986 |
+
append_history: bool = True,
|
987 |
+
stream: Optional[bool] = _SENTINEL,
|
988 |
+
stop_words_ids: Optional[List[List[int]]] = None,
|
989 |
+
generation_config: Optional[GenerationConfig] = None,
|
990 |
+
**kwargs,
|
991 |
+
) -> Tuple[str, HistoryType]:
|
992 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
993 |
+
|
994 |
+
assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
|
995 |
+
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
|
996 |
+
if history is None:
|
997 |
+
history = []
|
998 |
+
if stop_words_ids is None:
|
999 |
+
stop_words_ids = []
|
1000 |
+
|
1001 |
+
max_window_size = kwargs.get('max_window_size', None)
|
1002 |
+
if max_window_size is None:
|
1003 |
+
max_window_size = generation_config.max_window_size
|
1004 |
+
raw_text, context_tokens = make_context(
|
1005 |
+
tokenizer,
|
1006 |
+
query,
|
1007 |
+
history=history,
|
1008 |
+
system=system,
|
1009 |
+
max_window_size=max_window_size,
|
1010 |
+
chat_format=generation_config.chat_format,
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
stop_words_ids.extend(get_stop_words_ids(
|
1014 |
+
generation_config.chat_format, tokenizer
|
1015 |
+
))
|
1016 |
+
input_ids = torch.tensor([context_tokens]).to(self.device)
|
1017 |
+
outputs = self.generate(
|
1018 |
+
input_ids,
|
1019 |
+
stop_words_ids=stop_words_ids,
|
1020 |
+
return_dict_in_generate=False,
|
1021 |
+
generation_config=generation_config,
|
1022 |
+
**kwargs,
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
response = decode_tokens(
|
1026 |
+
outputs[0],
|
1027 |
+
tokenizer,
|
1028 |
+
raw_text_len=len(raw_text),
|
1029 |
+
context_length=len(context_tokens),
|
1030 |
+
chat_format=generation_config.chat_format,
|
1031 |
+
verbose=False,
|
1032 |
+
errors='replace'
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
if append_history:
|
1036 |
+
history.append((query, response))
|
1037 |
+
|
1038 |
+
return response, history
|
1039 |
+
|
1040 |
+
def chat_stream(
|
1041 |
+
self,
|
1042 |
+
tokenizer: PreTrainedTokenizer,
|
1043 |
+
query: str,
|
1044 |
+
history: Optional[HistoryType],
|
1045 |
+
system: str = "You are a helpful assistant.",
|
1046 |
+
stop_words_ids: Optional[List[List[int]]] = None,
|
1047 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1048 |
+
generation_config: Optional[GenerationConfig] = None,
|
1049 |
+
**kwargs,
|
1050 |
+
) -> Generator[str, Any, None]:
|
1051 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
1052 |
+
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
|
1053 |
+
if history is None:
|
1054 |
+
history = []
|
1055 |
+
if stop_words_ids is None:
|
1056 |
+
stop_words_ids = []
|
1057 |
+
|
1058 |
+
max_window_size = kwargs.get('max_window_size', None)
|
1059 |
+
if max_window_size is None:
|
1060 |
+
max_window_size = generation_config.max_window_size
|
1061 |
+
raw_text, context_tokens = make_context(
|
1062 |
+
tokenizer,
|
1063 |
+
query,
|
1064 |
+
history=history,
|
1065 |
+
system=system,
|
1066 |
+
max_window_size=max_window_size,
|
1067 |
+
chat_format=generation_config.chat_format,
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
stop_words_ids.extend(get_stop_words_ids(
|
1071 |
+
generation_config.chat_format, tokenizer
|
1072 |
+
))
|
1073 |
+
if stop_words_ids is not None:
|
1074 |
+
stop_words_logits_processor = StopWordsLogitsProcessor(
|
1075 |
+
stop_words_ids=stop_words_ids,
|
1076 |
+
eos_token_id=generation_config.eos_token_id,
|
1077 |
+
)
|
1078 |
+
if logits_processor is None:
|
1079 |
+
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
1080 |
+
else:
|
1081 |
+
logits_processor.append(stop_words_logits_processor)
|
1082 |
+
input_ids = torch.tensor([context_tokens]).to(self.device)
|
1083 |
+
|
1084 |
+
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
|
1085 |
+
self.__class__.generate_stream = NewGenerationMixin.generate
|
1086 |
+
self.__class__.sample_stream = NewGenerationMixin.sample_stream
|
1087 |
+
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
|
1088 |
+
|
1089 |
+
def stream_generator():
|
1090 |
+
outputs = []
|
1091 |
+
for token in self.generate_stream(
|
1092 |
+
input_ids,
|
1093 |
+
return_dict_in_generate=False,
|
1094 |
+
generation_config=stream_config,
|
1095 |
+
logits_processor=logits_processor,
|
1096 |
+
seed=-1,
|
1097 |
+
**kwargs):
|
1098 |
+
outputs.append(token.item())
|
1099 |
+
yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
|
1100 |
+
|
1101 |
+
return stream_generator()
|
1102 |
+
|
1103 |
+
def generate(
|
1104 |
+
self,
|
1105 |
+
inputs: Optional[torch.Tensor] = None,
|
1106 |
+
generation_config: Optional[GenerationConfig] = None,
|
1107 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1108 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1109 |
+
prefix_allowed_tokens_fn: Optional[
|
1110 |
+
Callable[[int, torch.Tensor], List[int]]
|
1111 |
+
] = None,
|
1112 |
+
synced_gpus: Optional[bool] = None,
|
1113 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
1114 |
+
streamer: Optional["BaseStreamer"] = None,
|
1115 |
+
**kwargs,
|
1116 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
1117 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
1118 |
+
|
1119 |
+
# Process stop_words_ids.
|
1120 |
+
stop_words_ids = kwargs.pop("stop_words_ids", None)
|
1121 |
+
if stop_words_ids is None and generation_config is not None:
|
1122 |
+
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
1123 |
+
if stop_words_ids is None:
|
1124 |
+
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
1125 |
+
|
1126 |
+
if stop_words_ids is not None:
|
1127 |
+
stop_words_logits_processor = StopWordsLogitsProcessor(
|
1128 |
+
stop_words_ids=stop_words_ids,
|
1129 |
+
eos_token_id=generation_config.eos_token_id,
|
1130 |
+
)
|
1131 |
+
if logits_processor is None:
|
1132 |
+
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
1133 |
+
else:
|
1134 |
+
logits_processor.append(stop_words_logits_processor)
|
1135 |
+
|
1136 |
+
return super().generate(
|
1137 |
+
inputs,
|
1138 |
+
generation_config=generation_config,
|
1139 |
+
logits_processor=logits_processor,
|
1140 |
+
stopping_criteria=stopping_criteria,
|
1141 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1142 |
+
synced_gpus=synced_gpus,
|
1143 |
+
assistant_model=assistant_model,
|
1144 |
+
streamer=streamer,
|
1145 |
+
**kwargs,
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
|
1149 |
+
class RotaryEmbedding(torch.nn.Module):
|
1150 |
+
def __init__(self, dim, base=10000):
|
1151 |
+
super().__init__()
|
1152 |
+
self.dim = dim
|
1153 |
+
self.base = base
|
1154 |
+
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
1155 |
+
if importlib.util.find_spec("einops") is None:
|
1156 |
+
raise RuntimeError("einops is required for Rotary Embedding")
|
1157 |
+
|
1158 |
+
self._rotary_pos_emb_cache = None
|
1159 |
+
self._seq_len_cached = 0
|
1160 |
+
self._ntk_alpha_cached = 1.0
|
1161 |
+
|
1162 |
+
def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
1163 |
+
seqlen = max_seq_len + offset
|
1164 |
+
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
1165 |
+
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
1166 |
+
self.inv_freq = 1.0 / (
|
1167 |
+
base
|
1168 |
+
** (
|
1169 |
+
torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
|
1170 |
+
/ self.dim
|
1171 |
+
)
|
1172 |
+
)
|
1173 |
+
self._seq_len_cached = max(2 * seqlen, 16)
|
1174 |
+
self._ntk_alpha_cached = ntk_alpha
|
1175 |
+
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
|
1176 |
+
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
1177 |
+
|
1178 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
1179 |
+
from einops import rearrange
|
1180 |
+
|
1181 |
+
emb = rearrange(emb, "n d -> 1 n 1 d")
|
1182 |
+
|
1183 |
+
cos, sin = emb.cos(), emb.sin()
|
1184 |
+
self._rotary_pos_emb_cache = [cos, sin]
|
1185 |
+
|
1186 |
+
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
1187 |
+
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
|
1188 |
+
cos, sin = self._rotary_pos_emb_cache
|
1189 |
+
return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
|
1190 |
+
|
1191 |
+
|
1192 |
+
def _rotate_half(x):
|
1193 |
+
from einops import rearrange
|
1194 |
+
|
1195 |
+
x = rearrange(x, "... (j d) -> ... j d", j=2)
|
1196 |
+
x1, x2 = x.unbind(dim=-2)
|
1197 |
+
return torch.cat((-x2, x1), dim=-1)
|
1198 |
+
|
1199 |
+
|
1200 |
+
def apply_rotary_pos_emb(t, freqs):
|
1201 |
+
cos, sin = freqs
|
1202 |
+
if apply_rotary_emb_func is not None and t.is_cuda:
|
1203 |
+
t_ = t.float()
|
1204 |
+
cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
|
1205 |
+
sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
|
1206 |
+
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
1207 |
+
return output
|
1208 |
+
else:
|
1209 |
+
rot_dim = freqs[0].shape[-1]
|
1210 |
+
cos, sin = freqs
|
1211 |
+
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
1212 |
+
t_ = t_.float()
|
1213 |
+
t_pass_ = t_pass_.float()
|
1214 |
+
t_ = (t_ * cos) + (_rotate_half(t_) * sin)
|
1215 |
+
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
1216 |
+
|
1217 |
+
|
1218 |
+
class RMSNorm(torch.nn.Module):
|
1219 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
1220 |
+
super().__init__()
|
1221 |
+
self.eps = eps
|
1222 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
1223 |
+
|
1224 |
+
def _norm(self, x):
|
1225 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
1226 |
+
|
1227 |
+
def forward(self, x):
|
1228 |
+
if rms_norm is not None and x.is_cuda:
|
1229 |
+
return rms_norm(x, self.weight, self.eps)
|
1230 |
+
else:
|
1231 |
+
output = self._norm(x.float()).type_as(x)
|
1232 |
+
return output * self.weight
|
msc
ADDED
Binary file (378 Bytes). View file
|
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15442649088
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"transformer.h.0.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"transformer.h.0.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"transformer.h.1.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"transformer.h.1.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"transformer.h.10.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"transformer.h.10.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"transformer.h.10.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"transformer.h.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"transformer.h.10.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"transformer.h.10.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"transformer.h.10.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"transformer.h.10.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"transformer.h.11.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"transformer.h.11.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"transformer.h.11.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"transformer.h.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"transformer.h.11.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"transformer.h.11.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"transformer.h.11.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"transformer.h.11.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"transformer.h.12.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"transformer.h.12.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"transformer.h.12.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"transformer.h.12.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"transformer.h.12.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"transformer.h.12.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"transformer.h.12.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"transformer.h.12.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"transformer.h.13.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"transformer.h.13.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"transformer.h.13.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"transformer.h.13.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"transformer.h.13.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"transformer.h.13.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"transformer.h.13.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"transformer.h.13.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"transformer.h.14.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"transformer.h.14.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"transformer.h.14.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"transformer.h.14.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"transformer.h.14.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"transformer.h.14.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"transformer.h.14.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"transformer.h.14.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"transformer.h.15.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"transformer.h.15.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"transformer.h.15.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"transformer.h.15.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"transformer.h.15.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"transformer.h.15.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"transformer.h.15.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"transformer.h.15.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"transformer.h.16.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"transformer.h.16.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"transformer.h.16.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"transformer.h.16.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"transformer.h.16.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"transformer.h.16.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"transformer.h.16.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"transformer.h.16.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"transformer.h.17.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"transformer.h.17.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"transformer.h.17.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"transformer.h.17.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"transformer.h.17.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"transformer.h.17.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"transformer.h.17.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"transformer.h.17.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"transformer.h.18.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"transformer.h.18.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"transformer.h.18.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"transformer.h.18.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"transformer.h.18.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"transformer.h.18.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"transformer.h.18.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"transformer.h.18.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"transformer.h.19.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"transformer.h.19.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"transformer.h.19.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"transformer.h.19.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"transformer.h.19.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"transformer.h.19.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"transformer.h.19.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"transformer.h.19.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"transformer.h.2.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"transformer.h.2.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"transformer.h.20.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"transformer.h.20.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"transformer.h.20.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"transformer.h.20.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"transformer.h.20.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"transformer.h.20.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"transformer.h.20.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"transformer.h.20.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"transformer.h.21.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"transformer.h.21.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"transformer.h.21.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"transformer.h.21.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"transformer.h.21.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"transformer.h.21.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
125 |
+
"transformer.h.21.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"transformer.h.21.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
127 |
+
"transformer.h.22.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
128 |
+
"transformer.h.22.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
129 |
+
"transformer.h.22.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
130 |
+
"transformer.h.22.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
131 |
+
"transformer.h.22.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
132 |
+
"transformer.h.22.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
133 |
+
"transformer.h.22.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
134 |
+
"transformer.h.22.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
135 |
+
"transformer.h.23.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
136 |
+
"transformer.h.23.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
137 |
+
"transformer.h.23.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
138 |
+
"transformer.h.23.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
139 |
+
"transformer.h.23.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
140 |
+
"transformer.h.23.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
141 |
+
"transformer.h.23.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
142 |
+
"transformer.h.23.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
143 |
+
"transformer.h.24.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"transformer.h.24.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"transformer.h.24.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"transformer.h.24.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"transformer.h.24.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"transformer.h.24.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
149 |
+
"transformer.h.24.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
150 |
+
"transformer.h.24.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
151 |
+
"transformer.h.25.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
152 |
+
"transformer.h.25.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"transformer.h.25.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"transformer.h.25.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"transformer.h.25.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"transformer.h.25.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"transformer.h.25.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"transformer.h.25.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"transformer.h.26.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"transformer.h.26.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"transformer.h.26.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"transformer.h.26.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"transformer.h.26.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
+
"transformer.h.26.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
+
"transformer.h.26.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
+
"transformer.h.26.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
167 |
+
"transformer.h.27.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
168 |
+
"transformer.h.27.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"transformer.h.27.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"transformer.h.27.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"transformer.h.27.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"transformer.h.27.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"transformer.h.27.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"transformer.h.27.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"transformer.h.28.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"transformer.h.28.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"transformer.h.28.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"transformer.h.28.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"transformer.h.28.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"transformer.h.28.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"transformer.h.28.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"transformer.h.28.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"transformer.h.29.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"transformer.h.29.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"transformer.h.29.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"transformer.h.29.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"transformer.h.29.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"transformer.h.29.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"transformer.h.29.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"transformer.h.29.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
192 |
+
"transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
+
"transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
194 |
+
"transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
+
"transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
196 |
+
"transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
197 |
+
"transformer.h.3.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
198 |
+
"transformer.h.3.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
199 |
+
"transformer.h.30.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"transformer.h.30.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"transformer.h.30.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"transformer.h.30.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"transformer.h.30.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"transformer.h.30.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"transformer.h.30.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"transformer.h.30.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"transformer.h.31.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"transformer.h.31.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"transformer.h.31.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"transformer.h.31.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"transformer.h.31.ln_2.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"transformer.h.31.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"transformer.h.31.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"transformer.h.31.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"transformer.h.4.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"transformer.h.4.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
225 |
+
"transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
226 |
+
"transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
227 |
+
"transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
228 |
+
"transformer.h.5.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
229 |
+
"transformer.h.5.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
230 |
+
"transformer.h.5.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
231 |
+
"transformer.h.6.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
232 |
+
"transformer.h.6.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
233 |
+
"transformer.h.6.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
234 |
+
"transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
235 |
+
"transformer.h.6.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
236 |
+
"transformer.h.6.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
237 |
+
"transformer.h.6.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
238 |
+
"transformer.h.6.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"transformer.h.7.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"transformer.h.7.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"transformer.h.7.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"transformer.h.7.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"transformer.h.7.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"transformer.h.7.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"transformer.h.7.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"transformer.h.8.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"transformer.h.8.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"transformer.h.8.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"transformer.h.8.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"transformer.h.8.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"transformer.h.8.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"transformer.h.8.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"transformer.h.9.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"transformer.h.9.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"transformer.h.9.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"transformer.h.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"transformer.h.9.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"transformer.h.9.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"transformer.h.9.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"transformer.h.9.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
|
264 |
+
"transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
|
265 |
+
}
|
266 |
+
}
|
qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
qwen_generation_utils.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Generation support."""
|
7 |
+
|
8 |
+
from typing import Tuple, List, Union, Iterable
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from transformers import PreTrainedTokenizer
|
14 |
+
from transformers import logging
|
15 |
+
from transformers.generation import LogitsProcessor
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
# Types.
|
20 |
+
HistoryType = List[Tuple[str, str]]
|
21 |
+
TokensType = List[int]
|
22 |
+
BatchTokensType = List[List[int]]
|
23 |
+
|
24 |
+
|
25 |
+
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
26 |
+
for tokens in batch:
|
27 |
+
context_length = len(tokens)
|
28 |
+
if context_length < seq_length:
|
29 |
+
tokens.extend([pad_id] * (seq_length - context_length))
|
30 |
+
return batch
|
31 |
+
|
32 |
+
|
33 |
+
def get_ltor_masks_and_position_ids(
|
34 |
+
data,
|
35 |
+
eod_token,
|
36 |
+
reset_position_ids,
|
37 |
+
reset_attention_mask,
|
38 |
+
eod_mask_loss,
|
39 |
+
):
|
40 |
+
"""Build masks and position id for left to right model."""
|
41 |
+
|
42 |
+
# Extract batch size and sequence length.
|
43 |
+
micro_batch_size, seq_length = data.size()
|
44 |
+
|
45 |
+
# Attention mask (lower triangular).
|
46 |
+
if reset_attention_mask:
|
47 |
+
att_mask_batch = micro_batch_size
|
48 |
+
else:
|
49 |
+
att_mask_batch = 1
|
50 |
+
attention_mask = torch.tril(
|
51 |
+
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
52 |
+
).view(att_mask_batch, 1, seq_length, seq_length)
|
53 |
+
|
54 |
+
# Loss mask.
|
55 |
+
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
56 |
+
if eod_mask_loss:
|
57 |
+
loss_mask[data == eod_token] = 0.0
|
58 |
+
|
59 |
+
# Position ids.
|
60 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
61 |
+
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
62 |
+
# We need to clone as the ids will be modifed based on batch index.
|
63 |
+
if reset_position_ids:
|
64 |
+
position_ids = position_ids.clone()
|
65 |
+
|
66 |
+
if reset_position_ids or reset_attention_mask:
|
67 |
+
# Loop through the batches:
|
68 |
+
for b in range(micro_batch_size):
|
69 |
+
|
70 |
+
# Find indecies where EOD token is.
|
71 |
+
eod_index = position_ids[b, data[b] == eod_token]
|
72 |
+
# Detach indecies from positions if going to modify positions.
|
73 |
+
if reset_position_ids:
|
74 |
+
eod_index = eod_index.clone()
|
75 |
+
|
76 |
+
# Loop through EOD indecies:
|
77 |
+
prev_index = 0
|
78 |
+
for j in range(eod_index.size()[0]):
|
79 |
+
i = eod_index[j]
|
80 |
+
# Mask attention loss.
|
81 |
+
if reset_attention_mask:
|
82 |
+
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
83 |
+
# Reset positions.
|
84 |
+
if reset_position_ids:
|
85 |
+
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
86 |
+
prev_index = i + 1
|
87 |
+
|
88 |
+
# Convert attention mask to binary:
|
89 |
+
attention_mask = attention_mask < 0.5
|
90 |
+
|
91 |
+
return attention_mask, loss_mask, position_ids
|
92 |
+
|
93 |
+
|
94 |
+
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
95 |
+
"""Generate batch from context tokens."""
|
96 |
+
# Move to GPU.
|
97 |
+
tokens = context_tokens.contiguous().to(context_tokens.device)
|
98 |
+
# Get the attention mask and postition ids.
|
99 |
+
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
100 |
+
tokens,
|
101 |
+
eod_id,
|
102 |
+
reset_position_ids=False,
|
103 |
+
reset_attention_mask=False,
|
104 |
+
eod_mask_loss=False,
|
105 |
+
)
|
106 |
+
return tokens, attention_mask, position_ids
|
107 |
+
|
108 |
+
|
109 |
+
def get_stop_words_ids(chat_format, tokenizer):
|
110 |
+
if chat_format == "raw":
|
111 |
+
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
112 |
+
elif chat_format == "chatml":
|
113 |
+
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
114 |
+
else:
|
115 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
116 |
+
return stop_words_ids
|
117 |
+
|
118 |
+
|
119 |
+
def make_context(
|
120 |
+
tokenizer: PreTrainedTokenizer,
|
121 |
+
query: str,
|
122 |
+
history: List[Tuple[str, str]] = None,
|
123 |
+
system: str = "",
|
124 |
+
max_window_size: int = 6144,
|
125 |
+
chat_format: str = "chatml",
|
126 |
+
):
|
127 |
+
if history is None:
|
128 |
+
history = []
|
129 |
+
|
130 |
+
if chat_format == "chatml":
|
131 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
132 |
+
im_start_tokens = [tokenizer.im_start_id]
|
133 |
+
im_end_tokens = [tokenizer.im_end_id]
|
134 |
+
nl_tokens = tokenizer.encode("\n")
|
135 |
+
|
136 |
+
def _tokenize_str(role, content):
|
137 |
+
return f"{role}\n{content}", tokenizer.encode(
|
138 |
+
role, allowed_special=set()
|
139 |
+
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
140 |
+
|
141 |
+
system_text, system_tokens_part = _tokenize_str("system", system)
|
142 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
143 |
+
|
144 |
+
raw_text = ""
|
145 |
+
context_tokens = []
|
146 |
+
|
147 |
+
for turn_query, turn_response in reversed(history):
|
148 |
+
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
149 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
150 |
+
response_text, response_tokens_part = _tokenize_str(
|
151 |
+
"assistant", turn_response
|
152 |
+
)
|
153 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
154 |
+
|
155 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
156 |
+
prev_chat = (
|
157 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
158 |
+
)
|
159 |
+
|
160 |
+
current_context_size = (
|
161 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
162 |
+
)
|
163 |
+
if current_context_size < max_window_size:
|
164 |
+
context_tokens = next_context_tokens + context_tokens
|
165 |
+
raw_text = prev_chat + raw_text
|
166 |
+
else:
|
167 |
+
break
|
168 |
+
|
169 |
+
context_tokens = system_tokens + context_tokens
|
170 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
171 |
+
context_tokens += (
|
172 |
+
nl_tokens
|
173 |
+
+ im_start_tokens
|
174 |
+
+ _tokenize_str("user", query)[1]
|
175 |
+
+ im_end_tokens
|
176 |
+
+ nl_tokens
|
177 |
+
+ im_start_tokens
|
178 |
+
+ tokenizer.encode("assistant")
|
179 |
+
+ nl_tokens
|
180 |
+
)
|
181 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
182 |
+
|
183 |
+
elif chat_format == "raw":
|
184 |
+
raw_text = query
|
185 |
+
context_tokens = tokenizer.encode(raw_text)
|
186 |
+
else:
|
187 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
188 |
+
|
189 |
+
return raw_text, context_tokens
|
190 |
+
|
191 |
+
|
192 |
+
def _decode_default(
|
193 |
+
tokens: List[int],
|
194 |
+
*,
|
195 |
+
stop_words: List[str],
|
196 |
+
eod_words: List[str],
|
197 |
+
tokenizer: PreTrainedTokenizer,
|
198 |
+
raw_text_len: int,
|
199 |
+
verbose: bool = False,
|
200 |
+
return_end_reason: bool = False,
|
201 |
+
errors: str='replace',
|
202 |
+
):
|
203 |
+
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
|
204 |
+
if verbose:
|
205 |
+
print("\nRaw Generate: ", trim_decode_tokens)
|
206 |
+
|
207 |
+
end_reason = f"Gen length {len(tokens)}"
|
208 |
+
for stop_word in stop_words:
|
209 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
210 |
+
for eod_word in eod_words:
|
211 |
+
if eod_word in trim_decode_tokens:
|
212 |
+
end_reason = f"Gen {eod_word!r}"
|
213 |
+
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
214 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
215 |
+
if verbose:
|
216 |
+
print("\nEnd Reason:", end_reason)
|
217 |
+
print("\nGenerate: ", trim_decode_tokens)
|
218 |
+
|
219 |
+
if return_end_reason:
|
220 |
+
return trim_decode_tokens, end_reason
|
221 |
+
else:
|
222 |
+
return trim_decode_tokens
|
223 |
+
|
224 |
+
|
225 |
+
def _decode_chatml(
|
226 |
+
tokens: List[int],
|
227 |
+
*,
|
228 |
+
stop_words: List[str],
|
229 |
+
eod_token_ids: List[int],
|
230 |
+
tokenizer: PreTrainedTokenizer,
|
231 |
+
raw_text_len: int,
|
232 |
+
context_length: int,
|
233 |
+
verbose: bool = False,
|
234 |
+
return_end_reason: bool = False,
|
235 |
+
errors: str='replace'
|
236 |
+
):
|
237 |
+
end_reason = f"Gen length {len(tokens)}"
|
238 |
+
eod_token_idx = context_length
|
239 |
+
for eod_token_idx in range(context_length, len(tokens)):
|
240 |
+
if tokens[eod_token_idx] in eod_token_ids:
|
241 |
+
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
242 |
+
break
|
243 |
+
|
244 |
+
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
|
245 |
+
if verbose:
|
246 |
+
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
|
247 |
+
print("\nRaw Generate:", trim_decode_tokens)
|
248 |
+
print("\nEnd Reason:", end_reason)
|
249 |
+
for stop_word in stop_words:
|
250 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
251 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
252 |
+
if verbose:
|
253 |
+
print("\nGenerate:", trim_decode_tokens)
|
254 |
+
|
255 |
+
if return_end_reason:
|
256 |
+
return trim_decode_tokens, end_reason
|
257 |
+
else:
|
258 |
+
return trim_decode_tokens
|
259 |
+
|
260 |
+
|
261 |
+
def decode_tokens(
|
262 |
+
tokens: Union[torch.LongTensor, TokensType],
|
263 |
+
tokenizer: PreTrainedTokenizer,
|
264 |
+
raw_text_len: int,
|
265 |
+
context_length: int,
|
266 |
+
chat_format: str,
|
267 |
+
verbose: bool = False,
|
268 |
+
return_end_reason: bool = False,
|
269 |
+
errors: str="replace",
|
270 |
+
) -> str:
|
271 |
+
if torch.is_tensor(tokens):
|
272 |
+
tokens = tokens.cpu().numpy().tolist()
|
273 |
+
|
274 |
+
if chat_format == "chatml":
|
275 |
+
return _decode_chatml(
|
276 |
+
tokens,
|
277 |
+
stop_words=[],
|
278 |
+
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
279 |
+
tokenizer=tokenizer,
|
280 |
+
raw_text_len=raw_text_len,
|
281 |
+
context_length=context_length,
|
282 |
+
verbose=verbose,
|
283 |
+
return_end_reason=return_end_reason,
|
284 |
+
errors=errors,
|
285 |
+
)
|
286 |
+
elif chat_format == "raw":
|
287 |
+
return _decode_default(
|
288 |
+
tokens,
|
289 |
+
stop_words=["<|endoftext|>"],
|
290 |
+
eod_words=["<|endoftext|>"],
|
291 |
+
tokenizer=tokenizer,
|
292 |
+
raw_text_len=raw_text_len,
|
293 |
+
verbose=verbose,
|
294 |
+
return_end_reason=return_end_reason,
|
295 |
+
errors=errors,
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
299 |
+
|
300 |
+
|
301 |
+
class StopWordsLogitsProcessor(LogitsProcessor):
|
302 |
+
"""
|
303 |
+
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
stop_words_ids (:obj:`List[List[int]]`):
|
307 |
+
List of list of token ids of stop ids. In order to get the tokens of the words
|
308 |
+
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
309 |
+
add_prefix_space=True).input_ids`.
|
310 |
+
eos_token_id (:obj:`int`):
|
311 |
+
The id of the `end-of-sequence` token.
|
312 |
+
"""
|
313 |
+
|
314 |
+
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
315 |
+
|
316 |
+
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
317 |
+
raise ValueError(
|
318 |
+
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
319 |
+
)
|
320 |
+
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
321 |
+
raise ValueError(
|
322 |
+
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
323 |
+
)
|
324 |
+
if any(
|
325 |
+
any(
|
326 |
+
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
327 |
+
for token_id in stop_word_ids
|
328 |
+
)
|
329 |
+
for stop_word_ids in stop_words_ids
|
330 |
+
):
|
331 |
+
raise ValueError(
|
332 |
+
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
333 |
+
)
|
334 |
+
|
335 |
+
self.stop_words_ids = list(
|
336 |
+
filter(
|
337 |
+
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
338 |
+
)
|
339 |
+
)
|
340 |
+
self.eos_token_id = eos_token_id
|
341 |
+
for stop_token_seq in self.stop_words_ids:
|
342 |
+
assert (
|
343 |
+
len(stop_token_seq) > 0
|
344 |
+
), "Stop words token sequences {} cannot have an empty list".format(
|
345 |
+
stop_words_ids
|
346 |
+
)
|
347 |
+
|
348 |
+
def __call__(
|
349 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
350 |
+
) -> torch.FloatTensor:
|
351 |
+
stopped_samples = self._calc_stopped_samples(input_ids)
|
352 |
+
for i, should_stop in enumerate(stopped_samples):
|
353 |
+
if should_stop:
|
354 |
+
scores[i, self.eos_token_id] = float(2**15)
|
355 |
+
return scores
|
356 |
+
|
357 |
+
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
358 |
+
if len(tokens) == 0:
|
359 |
+
# if bad word tokens is just one token always ban it
|
360 |
+
return True
|
361 |
+
elif len(tokens) > len(prev_tokens):
|
362 |
+
# if bad word tokens are longer then prev input_ids they can't be equal
|
363 |
+
return False
|
364 |
+
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
365 |
+
# if tokens match
|
366 |
+
return True
|
367 |
+
else:
|
368 |
+
return False
|
369 |
+
|
370 |
+
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
371 |
+
stopped_samples = []
|
372 |
+
for prev_input_ids_slice in prev_input_ids:
|
373 |
+
match = False
|
374 |
+
for stop_token_seq in self.stop_words_ids:
|
375 |
+
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
376 |
+
# if tokens do not match continue
|
377 |
+
match = True
|
378 |
+
break
|
379 |
+
stopped_samples.append(match)
|
380 |
+
|
381 |
+
return stopped_samples
|
382 |
+
|
383 |
+
|
384 |
+
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
385 |
+
"""This function has been mostly taken from huggingface conversational
|
386 |
+
ai code at
|
387 |
+
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
388 |
+
conversational-ai-with-transfer-learning-2d818ac26313"""
|
389 |
+
|
390 |
+
if top_k > 0:
|
391 |
+
# Remove all tokens with a probability less than the
|
392 |
+
# last token of the top-k
|
393 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
394 |
+
logits[indices_to_remove] = filter_value
|
395 |
+
|
396 |
+
if top_p > 0.0:
|
397 |
+
# Cconvert to 1D
|
398 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
399 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
400 |
+
|
401 |
+
# Remove tokens with cumulative probability above the threshold
|
402 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
403 |
+
# Shift the indices to the right to keep also the first token
|
404 |
+
# above the threshold
|
405 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
406 |
+
sorted_indices_to_remove[..., 0] = 0
|
407 |
+
for i in range(sorted_indices.size(0)):
|
408 |
+
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
409 |
+
logits[i][indices_to_remove] = filter_value
|
410 |
+
|
411 |
+
return logits
|
412 |
+
|
413 |
+
|
414 |
+
def switch(val1, val2, boolean):
|
415 |
+
boolean = boolean.type_as(val1)
|
416 |
+
return (1 - boolean) * val1 + boolean * val2
|
tokenization_qwen.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
SPECIAL_TOKENS = (
|
31 |
+
ENDOFTEXT,
|
32 |
+
IMSTART,
|
33 |
+
IMEND,
|
34 |
+
) + EXTRAS
|
35 |
+
|
36 |
+
|
37 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
38 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
39 |
+
contents = f.read()
|
40 |
+
return {
|
41 |
+
base64.b64decode(token): int(rank)
|
42 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
43 |
+
}
|
44 |
+
|
45 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
46 |
+
"""QWen tokenizer."""
|
47 |
+
|
48 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
49 |
+
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
vocab_file,
|
53 |
+
errors="replace",
|
54 |
+
**kwargs,
|
55 |
+
):
|
56 |
+
super().__init__(**kwargs)
|
57 |
+
|
58 |
+
self.errors = errors # how to handle errors in decoding
|
59 |
+
|
60 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
61 |
+
self.special_tokens = {
|
62 |
+
token: index
|
63 |
+
for index, token in enumerate(
|
64 |
+
SPECIAL_TOKENS, start=len(self.mergeable_ranks)
|
65 |
+
)
|
66 |
+
}
|
67 |
+
|
68 |
+
enc = tiktoken.Encoding(
|
69 |
+
"Qwen",
|
70 |
+
pat_str=PAT_STR,
|
71 |
+
mergeable_ranks=self.mergeable_ranks,
|
72 |
+
special_tokens=self.special_tokens,
|
73 |
+
)
|
74 |
+
assert (
|
75 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
76 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
77 |
+
|
78 |
+
self.decoder = {
|
79 |
+
v: k for k, v in self.mergeable_ranks.items()
|
80 |
+
} # type: dict[int, bytes|str]
|
81 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
82 |
+
|
83 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
84 |
+
|
85 |
+
self.eod_id = self.tokenizer.eot_token
|
86 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
87 |
+
self.im_end_id = self.special_tokens[IMEND]
|
88 |
+
|
89 |
+
def __getstate__(self):
|
90 |
+
# for pickle lovers
|
91 |
+
state = self.__dict__.copy()
|
92 |
+
del state['tokenizer']
|
93 |
+
return state
|
94 |
+
|
95 |
+
def __setstate__(self, state):
|
96 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
97 |
+
self.__dict__.update(state)
|
98 |
+
enc = tiktoken.Encoding(
|
99 |
+
"Qwen",
|
100 |
+
pat_str=PAT_STR,
|
101 |
+
mergeable_ranks=self.mergeable_ranks,
|
102 |
+
special_tokens=self.special_tokens,
|
103 |
+
)
|
104 |
+
self.tokenizer = enc
|
105 |
+
|
106 |
+
|
107 |
+
def __len__(self) -> int:
|
108 |
+
return self.tokenizer.n_vocab
|
109 |
+
|
110 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
111 |
+
return self.mergeable_ranks
|
112 |
+
|
113 |
+
def convert_tokens_to_ids(
|
114 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
115 |
+
) -> List[int]:
|
116 |
+
ids = []
|
117 |
+
if isinstance(tokens, (str, bytes)):
|
118 |
+
if tokens in self.special_tokens:
|
119 |
+
return self.special_tokens[tokens]
|
120 |
+
else:
|
121 |
+
return self.mergeable_ranks.get(tokens)
|
122 |
+
for token in tokens:
|
123 |
+
if token in self.special_tokens:
|
124 |
+
ids.append(self.special_tokens[token])
|
125 |
+
else:
|
126 |
+
ids.append(self.mergeable_ranks.get(token))
|
127 |
+
return ids
|
128 |
+
|
129 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
130 |
+
if not special_tokens and new_tokens:
|
131 |
+
raise ValueError('Adding regular tokens is not supported')
|
132 |
+
for token in new_tokens:
|
133 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
134 |
+
if surface_form not in SPECIAL_TOKENS:
|
135 |
+
raise ValueError('Adding unknown special tokens is not supported')
|
136 |
+
return 0
|
137 |
+
|
138 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
139 |
+
"""
|
140 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
`Tuple(str)`: Paths to the files saved.
|
144 |
+
"""
|
145 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
146 |
+
with open(file_path, "w", encoding="utf8") as w:
|
147 |
+
for k, v in self.mergeable_ranks.items():
|
148 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
149 |
+
w.write(line)
|
150 |
+
return (file_path,)
|
151 |
+
|
152 |
+
def tokenize(
|
153 |
+
self,
|
154 |
+
text: str,
|
155 |
+
allowed_special: Union[Set, str] = "all",
|
156 |
+
disallowed_special: Union[Collection, str] = (),
|
157 |
+
**kwargs,
|
158 |
+
) -> List[Union[bytes, str]]:
|
159 |
+
"""
|
160 |
+
Converts a string in a sequence of tokens.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
text (`str`):
|
164 |
+
The sequence to be encoded.
|
165 |
+
allowed_special (`Literal["all"]` or `set`):
|
166 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
167 |
+
Default to "all".
|
168 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
169 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
170 |
+
Default to an empty tuple.
|
171 |
+
|
172 |
+
kwargs (additional keyword arguments, *optional*):
|
173 |
+
Will be passed to the underlying model specific encode method.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
`List[bytes|str]`: The list of tokens.
|
177 |
+
"""
|
178 |
+
tokens = []
|
179 |
+
text = unicodedata.normalize("NFC", text)
|
180 |
+
|
181 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
182 |
+
for t in self.tokenizer.encode(
|
183 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
184 |
+
):
|
185 |
+
tokens.append(self.decoder[t])
|
186 |
+
return tokens
|
187 |
+
|
188 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
189 |
+
"""
|
190 |
+
Converts a sequence of tokens in a single string.
|
191 |
+
"""
|
192 |
+
text = ""
|
193 |
+
temp = b""
|
194 |
+
for t in tokens:
|
195 |
+
if isinstance(t, str):
|
196 |
+
if temp:
|
197 |
+
text += temp.decode("utf-8", errors=self.errors)
|
198 |
+
temp = b""
|
199 |
+
text += t
|
200 |
+
elif isinstance(t, bytes):
|
201 |
+
temp += t
|
202 |
+
else:
|
203 |
+
raise TypeError("token should only be of type types or str")
|
204 |
+
if temp:
|
205 |
+
text += temp.decode("utf-8", errors=self.errors)
|
206 |
+
return text
|
207 |
+
|
208 |
+
@property
|
209 |
+
def vocab_size(self):
|
210 |
+
return self.tokenizer.n_vocab
|
211 |
+
|
212 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
213 |
+
"""Converts an id to a token, special tokens included"""
|
214 |
+
if index in self.decoder:
|
215 |
+
return self.decoder[index]
|
216 |
+
raise ValueError("unknown ids")
|
217 |
+
|
218 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
219 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
220 |
+
if token in self.special_tokens:
|
221 |
+
return self.special_tokens[token]
|
222 |
+
if token in self.mergeable_ranks:
|
223 |
+
return self.mergeable_ranks[token]
|
224 |
+
raise ValueError("unknown token")
|
225 |
+
|
226 |
+
def _tokenize(self, text: str, **kwargs):
|
227 |
+
"""
|
228 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
229 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
230 |
+
|
231 |
+
Do NOT take care of added tokens.
|
232 |
+
"""
|
233 |
+
raise NotImplementedError
|
234 |
+
|
235 |
+
def _decode(
|
236 |
+
self,
|
237 |
+
token_ids: Union[int, List[int]],
|
238 |
+
skip_special_tokens: bool = False,
|
239 |
+
errors: str = None,
|
240 |
+
**kwargs,
|
241 |
+
) -> str:
|
242 |
+
if isinstance(token_ids, int):
|
243 |
+
token_ids = [token_ids]
|
244 |
+
if skip_special_tokens:
|
245 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
246 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "left",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|