--- language: - en tags: - summarization datasets: - multi_news metrics: - rouge base_model: ccdv/lsg-bart-base-4096 model-index: - name: ccdv/lsg-bart-base-4096-multinews results: [] --- **Transformers >= 4.23.1**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \ Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-multinews", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-multinews", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True ) ``` # ccdv/lsg-bart-base-4096-multinews This model is a fine-tuned version of [ccdv/lsg-bart-base-4096](https://huggingface.co./ccdv/lsg-bart-base-4096) on the [multi_news default](https://huggingface.co./datasets/multi_news) dataset. \ It achieves the following results on the test set: | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 256 | 0 | 768 | 47.10 | 18.94 | 25.22 | 43.13 | | 4096 | Local | 128 | 0 | 384 | 46.73 | 18.79 | 25.13 | 42.76 | | 4096 | Pooling | 128 | 4 | 644 | 46.83 | 18.87 | 25.23 | 42.86 | | 4096 | Stride | 128 | 4 | 644 | 46.83 | 18.68 | 24.98 | 42.88 | | 4096 | Block Stride | 128 | 4 | 644 | 46.83 | 18.72 | 25.06 | 42.88 | | 4096 | Norm | 128 | 4 | 644 | 46.74 | 18.60 | 24.93 | 42.79 | | 4096 | LSH | 128 | 4 | 644 | 46.74 | 18.82 | 25.19 | 42.77 | With smaller block size (lower ressources): | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 64 | 0 | 192 | 45.61 | 17.91 | 24.54 | 41.65 | | 4096 | Local | 32 | 0 | 96 | 43.50 | 16.36 | 23.45 | 39.61 | | 4096 | Pooling | 32 | 4 | 160 | 44.77 | 17.31 | 24.16 | 40.86 | | 4096 | Stride | 32 | 4 | 160 | 45.29 | 17.81 | 24.45 | 41.40 | | 4096 | Block Stride | 32 | 4 | 160 | 45.39 | 17.86 | 24.51 | 41.43 | | 4096 | Norm | 32 | 4 | 160 | 44.65 | 17.25 | 24.09 | 40.76 | | 4096 | LSH | 32 | 4 | 160 | 44.44 | 17.20 | 24.00 | 40.57 | ## Model description The model relies on Local-Sparse-Global attention to handle long sequences: ![attn](attn.png) The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). \ The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12.0 ### Generate hyperparameters The following hyperparameters were used during generation: - dataset_name: multi_news - dataset_config_name: default - eval_batch_size: 8 - eval_samples: 5622 - early_stopping: True - ignore_pad_token_for_loss: True - length_penalty: 2.0 - max_length: 320 - min_length: 32 - num_beams: 5 - no_repeat_ngram_size: None - seed: 123 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6