--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ' "Die Diskussion um ein nationales Tempolimit auf Autobahnen wird weiterhin kontrovers geführt, wobei Befürworter auf die Verbesserung der Verkehrssicherheit und Gegner auf die Einschränkung der individuellen Freiheit verweisen."' - text: ' Diese selbsternannten Klimaretter blockieren wieder einmal die Straßen und sorgen für Chaos, während der Rest der Welt zur Arbeit gehen muss.' - text: ' Klima-Aktivisten wie Fridays for Future und die Letzte Generation fordern mit ihren Aktionen eine schnellere Umsetzung von Klimaschutzmaßnahmen.' - text: Die Blockaden von Straßen und Autobahnen durch Klima-Aktivisten haben in den letzten Wochen sowohl Unterstützung als auch Kritik hervorgerufen, wobei einige die Dringlichkeit des Klimanotstands betonen, während andere die Beeinträchtigung des Alltags und die Rechte anderer Nutzer der Verkehrsinfrastruktur in den Vordergrund stellen. - text: ' "Ein nationales Tempolimit auf Autobahnen könnte nicht nur die Verkehrssicherheit erhöhen, sondern auch einen wichtigen Beitrag zum Klimaschutz leisten."' metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/all-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.946236559139785 name: Accuracy --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:-----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neutral | | | opposed | | | supportive | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9462 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("cbpuschmann/all-mpnet-base-klimacoder_v0.7") # Run inference preds = model(" Diese selbsternannten Klimaretter blockieren wieder einmal die Straßen und sorgen für Chaos, während der Rest der Welt zur Arbeit gehen muss.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 10 | 25.6075 | 57 | | Label | Training Sample Count | |:-----------|:----------------------| | neutral | 329 | | opposed | 395 | | supportive | 392 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2421 | - | | 0.0019 | 50 | 0.259 | - | | 0.0039 | 100 | 0.2536 | - | | 0.0058 | 150 | 0.25 | - | | 0.0077 | 200 | 0.243 | - | | 0.0097 | 250 | 0.2441 | - | | 0.0116 | 300 | 0.2377 | - | | 0.0135 | 350 | 0.2247 | - | | 0.0155 | 400 | 0.2031 | - | | 0.0174 | 450 | 0.1656 | - | | 0.0193 | 500 | 0.1383 | - | | 0.0213 | 550 | 0.1383 | - | | 0.0232 | 600 | 0.1155 | - | | 0.0251 | 650 | 0.1007 | - | | 0.0271 | 700 | 0.0741 | - | | 0.0290 | 750 | 0.063 | - | | 0.0309 | 800 | 0.0428 | - | | 0.0329 | 850 | 0.0304 | - | | 0.0348 | 900 | 0.0243 | - | | 0.0367 | 950 | 0.0189 | - | | 0.0387 | 1000 | 0.0135 | - | | 0.0406 | 1050 | 0.0089 | - | | 0.0425 | 1100 | 0.0115 | - | | 0.0445 | 1150 | 0.0071 | - | | 0.0464 | 1200 | 0.0068 | - | | 0.0483 | 1250 | 0.0057 | - | | 0.0503 | 1300 | 0.0052 | - | | 0.0522 | 1350 | 0.0063 | - | | 0.0541 | 1400 | 0.0064 | - | | 0.0561 | 1450 | 0.006 | - | | 0.0580 | 1500 | 0.0035 | - | | 0.0599 | 1550 | 0.008 | - | | 0.0619 | 1600 | 0.0069 | - | | 0.0638 | 1650 | 0.0021 | - | | 0.0657 | 1700 | 0.0037 | - | | 0.0677 | 1750 | 0.0034 | - | | 0.0696 | 1800 | 0.0049 | - | | 0.0715 | 1850 | 0.0024 | - | | 0.0735 | 1900 | 0.0085 | - | | 0.0754 | 1950 | 0.0075 | - | | 0.0773 | 2000 | 0.0073 | - | | 0.0793 | 2050 | 0.0031 | - | | 0.0812 | 2100 | 0.0031 | - | | 0.0831 | 2150 | 0.0017 | - | | 0.0851 | 2200 | 0.0024 | - | | 0.0870 | 2250 | 0.0026 | - | | 0.0889 | 2300 | 0.0033 | - | | 0.0909 | 2350 | 0.0097 | - | | 0.0928 | 2400 | 0.0079 | - | | 0.0947 | 2450 | 0.0028 | - | | 0.0967 | 2500 | 0.0021 | - | | 0.0986 | 2550 | 0.0015 | - | | 0.1005 | 2600 | 0.0018 | - | | 0.1025 | 2650 | 0.0028 | - | | 0.1044 | 2700 | 0.0045 | - | | 0.1063 | 2750 | 0.0029 | - | | 0.1083 | 2800 | 0.0007 | - | | 0.1102 | 2850 | 0.0 | - | | 0.1121 | 2900 | 0.0008 | - | | 0.1141 | 2950 | 0.0017 | - | | 0.1160 | 3000 | 0.0018 | - | | 0.1179 | 3050 | 0.0014 | - | | 0.1199 | 3100 | 0.0012 | - | | 0.1218 | 3150 | 0.001 | - | | 0.1237 | 3200 | 0.0016 | - | | 0.1257 | 3250 | 0.0043 | - | | 0.1276 | 3300 | 0.0001 | - | | 0.1295 | 3350 | 0.0017 | - | | 0.1315 | 3400 | 0.0003 | - | | 0.1334 | 3450 | 0.0004 | - | | 0.1353 | 3500 | 0.0014 | - | | 0.1373 | 3550 | 0.0001 | - | | 0.1392 | 3600 | 0.0 | - | | 0.1411 | 3650 | 0.0012 | - | | 0.1431 | 3700 | 0.0005 | - | | 0.1450 | 3750 | 0.0 | - | | 0.1469 | 3800 | 0.0 | - | | 0.1489 | 3850 | 0.0 | - | | 0.1508 | 3900 | 0.0 | - | | 0.1527 | 3950 | 0.0 | - | | 0.1547 | 4000 | 0.0061 | - | | 0.1566 | 4050 | 0.0014 | - | | 0.1585 | 4100 | 0.0005 | - | | 0.1605 | 4150 | 0.0005 | - | | 0.1624 | 4200 | 0.0001 | - | | 0.1643 | 4250 | 0.0003 | - | | 0.1663 | 4300 | 0.0033 | - | | 0.1682 | 4350 | 0.0049 | - | | 0.1701 | 4400 | 0.0012 | - | | 0.1721 | 4450 | 0.0 | - | | 0.1740 | 4500 | 0.0012 | - | | 0.1759 | 4550 | 0.0006 | - | | 0.1779 | 4600 | 0.0 | - | | 0.1798 | 4650 | 0.0 | - | | 0.1817 | 4700 | 0.0 | - | | 0.1837 | 4750 | 0.0 | - | | 0.1856 | 4800 | 0.0 | - | | 0.1875 | 4850 | 0.0 | - | | 0.1895 | 4900 | 0.0 | - | | 0.1914 | 4950 | 0.0 | - | | 0.1933 | 5000 | 0.0 | - | | 0.1953 | 5050 | 0.0 | - | | 0.1972 | 5100 | 0.0 | - | | 0.1991 | 5150 | 0.0 | - | | 0.2011 | 5200 | 0.0 | - | | 0.2030 | 5250 | 0.0 | - | | 0.2049 | 5300 | 0.0091 | - | | 0.2069 | 5350 | 0.0118 | - | | 0.2088 | 5400 | 0.0032 | - | | 0.2107 | 5450 | 0.0009 | - | | 0.2127 | 5500 | 0.0011 | - | | 0.2146 | 5550 | 0.0015 | - | | 0.2165 | 5600 | 0.0026 | - | | 0.2185 | 5650 | 0.0016 | - | | 0.2204 | 5700 | 0.0 | - | | 0.2223 | 5750 | 0.0019 | - | | 0.2243 | 5800 | 0.0039 | - | | 0.2262 | 5850 | 0.0005 | - | | 0.2281 | 5900 | 0.0006 | - | | 0.2301 | 5950 | 0.0015 | - | | 0.2320 | 6000 | 0.0018 | - | | 0.2339 | 6050 | 0.0012 | - | | 0.2359 | 6100 | 0.0042 | - | | 0.2378 | 6150 | 0.0016 | - | | 0.2397 | 6200 | 0.0011 | - | | 0.2417 | 6250 | 0.0 | - | | 0.2436 | 6300 | 0.0 | - | | 0.2455 | 6350 | 0.0025 | - | | 0.2475 | 6400 | 0.0012 | - | | 0.2494 | 6450 | 0.0 | - | | 0.2513 | 6500 | 0.0 | - | | 0.2533 | 6550 | 0.0 | - | | 0.2552 | 6600 | 0.0 | - | | 0.2571 | 6650 | 0.0 | - | | 0.2591 | 6700 | 0.0 | - | | 0.2610 | 6750 | 0.0 | - | | 0.2629 | 6800 | 0.0 | - | | 0.2649 | 6850 | 0.0 | - | | 0.2668 | 6900 | 0.0 | - | | 0.2687 | 6950 | 0.0 | - | | 0.2707 | 7000 | 0.0 | - | | 0.2726 | 7050 | 0.0 | - | | 0.2745 | 7100 | 0.0 | - | | 0.2765 | 7150 | 0.0 | - | | 0.2784 | 7200 | 0.0 | - | | 0.2803 | 7250 | 0.0 | - | | 0.2823 | 7300 | 0.0 | - | | 0.2842 | 7350 | 0.0 | - | | 0.2861 | 7400 | 0.0 | - | | 0.2881 | 7450 | 0.0 | - | | 0.2900 | 7500 | 0.0 | - | | 0.2919 | 7550 | 0.0 | - | | 0.2939 | 7600 | 0.0 | - | | 0.2958 | 7650 | 0.0 | - | | 0.2977 | 7700 | 0.0 | - | | 0.2997 | 7750 | 0.0 | - | | 0.3016 | 7800 | 0.0 | - | | 0.3035 | 7850 | 0.0 | - | | 0.3055 | 7900 | 0.0 | - | | 0.3074 | 7950 | 0.0 | - | | 0.3093 | 8000 | 0.0 | - | | 0.3113 | 8050 | 0.0 | - | | 0.3132 | 8100 | 0.0 | - | | 0.3151 | 8150 | 0.0 | - | | 0.3171 | 8200 | 0.0 | - | | 0.3190 | 8250 | 0.0 | - | | 0.3209 | 8300 | 0.0 | - | | 0.3229 | 8350 | 0.0 | - | | 0.3248 | 8400 | 0.0 | - | | 0.3267 | 8450 | 0.0 | - | | 0.3287 | 8500 | 0.0 | - | | 0.3306 | 8550 | 0.0 | - | | 0.3325 | 8600 | 0.0 | - | | 0.3345 | 8650 | 0.0 | - | | 0.3364 | 8700 | 0.0 | - | | 0.3383 | 8750 | 0.0 | - | | 0.3403 | 8800 | 0.0 | - | | 0.3422 | 8850 | 0.0 | - | | 0.3441 | 8900 | 0.0 | - | | 0.3461 | 8950 | 0.0 | - | | 0.3480 | 9000 | 0.0 | - | | 0.3499 | 9050 | 0.0 | - | | 0.3519 | 9100 | 0.0 | - | | 0.3538 | 9150 | 0.0 | - | | 0.3557 | 9200 | 0.0 | - | | 0.3577 | 9250 | 0.0 | - | | 0.3596 | 9300 | 0.0 | - | | 0.3615 | 9350 | 0.0 | - | | 0.3635 | 9400 | 0.0 | - | | 0.3654 | 9450 | 0.0081 | - | | 0.3673 | 9500 | 0.0078 | - | | 0.3693 | 9550 | 0.0104 | - | | 0.3712 | 9600 | 0.0034 | - | | 0.3731 | 9650 | 0.0009 | - | | 0.3751 | 9700 | 0.0006 | - | | 0.3770 | 9750 | 0.0033 | - | | 0.3789 | 9800 | 0.0007 | - | | 0.3809 | 9850 | 0.0 | - | | 0.3828 | 9900 | 0.0 | - | | 0.3847 | 9950 | 0.0 | - | | 0.3867 | 10000 | 0.0006 | - | | 0.3886 | 10050 | 0.0 | - | | 0.3905 | 10100 | 0.0 | - | | 0.3925 | 10150 | 0.0 | - | | 0.3944 | 10200 | 0.0 | - | | 0.3963 | 10250 | 0.0 | - | | 0.3983 | 10300 | 0.0 | - | | 0.4002 | 10350 | 0.0 | - | | 0.4021 | 10400 | 0.0 | - | | 0.4041 | 10450 | 0.0019 | - | | 0.4060 | 10500 | 0.0035 | - | | 0.4080 | 10550 | 0.0012 | - | | 0.4099 | 10600 | 0.0 | - | | 0.4118 | 10650 | 0.0 | - | | 0.4138 | 10700 | 0.0 | - | | 0.4157 | 10750 | 0.0 | - | | 0.4176 | 10800 | 0.0 | - | | 0.4196 | 10850 | 0.0 | - | | 0.4215 | 10900 | 0.0 | - | | 0.4234 | 10950 | 0.0006 | - | | 0.4254 | 11000 | 0.0 | - | | 0.4273 | 11050 | 0.0 | - | | 0.4292 | 11100 | 0.0 | - | | 0.4312 | 11150 | 0.0 | - | | 0.4331 | 11200 | 0.0 | - | | 0.4350 | 11250 | 0.0 | - | | 0.4370 | 11300 | 0.0 | - | | 0.4389 | 11350 | 0.0 | - | | 0.4408 | 11400 | 0.0 | - | | 0.4428 | 11450 | 0.0 | - | | 0.4447 | 11500 | 0.0 | - | | 0.4466 | 11550 | 0.0 | - | | 0.4486 | 11600 | 0.0 | - | | 0.4505 | 11650 | 0.0 | - | | 0.4524 | 11700 | 0.0 | - | | 0.4544 | 11750 | 0.0 | - | | 0.4563 | 11800 | 0.0 | - | | 0.4582 | 11850 | 0.0 | - | | 0.4602 | 11900 | 0.0 | - | | 0.4621 | 11950 | 0.0 | - | | 0.4640 | 12000 | 0.0 | - | | 0.4660 | 12050 | 0.0 | - | | 0.4679 | 12100 | 0.0 | - | | 0.4698 | 12150 | 0.0 | - | | 0.4718 | 12200 | 0.0 | - | | 0.4737 | 12250 | 0.0 | - | | 0.4756 | 12300 | 0.0 | - | | 0.4776 | 12350 | 0.0 | - | | 0.4795 | 12400 | 0.0 | - | | 0.4814 | 12450 | 0.0 | - | | 0.4834 | 12500 | 0.0 | - | | 0.4853 | 12550 | 0.0 | - | | 0.4872 | 12600 | 0.0 | - | | 0.4892 | 12650 | 0.0 | - | | 0.4911 | 12700 | 0.0 | - | | 0.4930 | 12750 | 0.0 | - | | 0.4950 | 12800 | 0.0 | - | | 0.4969 | 12850 | 0.0 | - | | 0.4988 | 12900 | 0.0 | - | | 0.5008 | 12950 | 0.0 | - | | 0.5027 | 13000 | 0.0 | - | | 0.5046 | 13050 | 0.0 | - | | 0.5066 | 13100 | 0.0 | - | | 0.5085 | 13150 | 0.0 | - | | 0.5104 | 13200 | 0.0 | - | | 0.5124 | 13250 | 0.0 | - | | 0.5143 | 13300 | 0.0 | - | | 0.5162 | 13350 | 0.0 | - | | 0.5182 | 13400 | 0.0 | - | | 0.5201 | 13450 | 0.0 | - | | 0.5220 | 13500 | 0.0 | - | | 0.5240 | 13550 | 0.0 | - | | 0.5259 | 13600 | 0.0 | - | | 0.5278 | 13650 | 0.0 | - | | 0.5298 | 13700 | 0.0 | - | | 0.5317 | 13750 | 0.0 | - | | 0.5336 | 13800 | 0.0 | - | | 0.5356 | 13850 | 0.0 | - | | 0.5375 | 13900 | 0.0 | - | | 0.5394 | 13950 | 0.0 | - | | 0.5414 | 14000 | 0.0 | - | | 0.5433 | 14050 | 0.0 | - | | 0.5452 | 14100 | 0.0 | - | | 0.5472 | 14150 | 0.0 | - | | 0.5491 | 14200 | 0.0 | - | | 0.5510 | 14250 | 0.0 | - | | 0.5530 | 14300 | 0.0 | - | | 0.5549 | 14350 | 0.0 | - | | 0.5568 | 14400 | 0.0 | - | | 0.5588 | 14450 | 0.0 | - | | 0.5607 | 14500 | 0.0 | - | | 0.5626 | 14550 | 0.0 | - | | 0.5646 | 14600 | 0.0 | - | | 0.5665 | 14650 | 0.0 | - | | 0.5684 | 14700 | 0.0 | - | | 0.5704 | 14750 | 0.0 | - | | 0.5723 | 14800 | 0.0 | - | | 0.5742 | 14850 | 0.0 | - | | 0.5762 | 14900 | 0.0 | - | | 0.5781 | 14950 | 0.0 | - | | 0.5800 | 15000 | 0.0 | - | | 0.5820 | 15050 | 0.0 | - | | 0.5839 | 15100 | 0.0 | - | | 0.5858 | 15150 | 0.0 | - | | 0.5878 | 15200 | 0.0 | - | | 0.5897 | 15250 | 0.0 | - | | 0.5916 | 15300 | 0.0 | - | | 0.5936 | 15350 | 0.0 | - | | 0.5955 | 15400 | 0.0 | - | | 0.5974 | 15450 | 0.0 | - | | 0.5994 | 15500 | 0.0 | - | | 0.6013 | 15550 | 0.0 | - | | 0.6032 | 15600 | 0.0 | - | | 0.6052 | 15650 | 0.0 | - | | 0.6071 | 15700 | 0.0 | - | | 0.6090 | 15750 | 0.0 | - | | 0.6110 | 15800 | 0.0 | - | | 0.6129 | 15850 | 0.0 | - | | 0.6148 | 15900 | 0.0 | - | | 0.6168 | 15950 | 0.0 | - | | 0.6187 | 16000 | 0.0 | - | | 0.6206 | 16050 | 0.0 | - | | 0.6226 | 16100 | 0.0 | - | | 0.6245 | 16150 | 0.0 | - | | 0.6264 | 16200 | 0.0 | - | | 0.6284 | 16250 | 0.0 | - | | 0.6303 | 16300 | 0.0 | - | | 0.6322 | 16350 | 0.0 | - | | 0.6342 | 16400 | 0.0 | - | | 0.6361 | 16450 | 0.0 | - | | 0.6380 | 16500 | 0.0 | - | | 0.6400 | 16550 | 0.0 | - | | 0.6419 | 16600 | 0.0 | - | | 0.6438 | 16650 | 0.0 | - | | 0.6458 | 16700 | 0.0 | - | | 0.6477 | 16750 | 0.0 | - | | 0.6496 | 16800 | 0.0 | - | | 0.6516 | 16850 | 0.0 | - | | 0.6535 | 16900 | 0.0 | - | | 0.6554 | 16950 | 0.0 | - | | 0.6574 | 17000 | 0.0 | - | | 0.6593 | 17050 | 0.0 | - | | 0.6612 | 17100 | 0.0 | - | | 0.6632 | 17150 | 0.0 | - | | 0.6651 | 17200 | 0.0 | - | | 0.6670 | 17250 | 0.0 | - | | 0.6690 | 17300 | 0.0 | - | | 0.6709 | 17350 | 0.0 | - | | 0.6728 | 17400 | 0.0 | - | | 0.6748 | 17450 | 0.0 | - | | 0.6767 | 17500 | 0.0 | - | | 0.6786 | 17550 | 0.0 | - | | 0.6806 | 17600 | 0.0 | - | | 0.6825 | 17650 | 0.0 | - | | 0.6844 | 17700 | 0.0 | - | | 0.6864 | 17750 | 0.0 | - | | 0.6883 | 17800 | 0.0 | - | | 0.6902 | 17850 | 0.0 | - | | 0.6922 | 17900 | 0.0 | - | | 0.6941 | 17950 | 0.0 | - | | 0.6960 | 18000 | 0.0 | - | | 0.6980 | 18050 | 0.0 | - | | 0.6999 | 18100 | 0.0 | - | | 0.7018 | 18150 | 0.0 | - | | 0.7038 | 18200 | 0.0 | - | | 0.7057 | 18250 | 0.0 | - | | 0.7076 | 18300 | 0.0 | - | | 0.7096 | 18350 | 0.0 | - | | 0.7115 | 18400 | 0.0 | - | | 0.7134 | 18450 | 0.0 | - | | 0.7154 | 18500 | 0.0 | - | | 0.7173 | 18550 | 0.0 | - | | 0.7192 | 18600 | 0.0 | - | | 0.7212 | 18650 | 0.0 | - | | 0.7231 | 18700 | 0.0 | - | | 0.7250 | 18750 | 0.0 | - | | 0.7270 | 18800 | 0.0 | - | | 0.7289 | 18850 | 0.0 | - | | 0.7308 | 18900 | 0.0 | - | | 0.7328 | 18950 | 0.0 | - | | 0.7347 | 19000 | 0.0 | - | | 0.7366 | 19050 | 0.0 | - | | 0.7386 | 19100 | 0.0 | - | | 0.7405 | 19150 | 0.0 | - | | 0.7424 | 19200 | 0.0 | - | | 0.7444 | 19250 | 0.0 | - | | 0.7463 | 19300 | 0.0 | - | | 0.7482 | 19350 | 0.0 | - | | 0.7502 | 19400 | 0.0 | - | | 0.7521 | 19450 | 0.0 | - | | 0.7540 | 19500 | 0.0 | - | | 0.7560 | 19550 | 0.0 | - | | 0.7579 | 19600 | 0.0 | - | | 0.7598 | 19650 | 0.0 | - | | 0.7618 | 19700 | 0.0 | - | | 0.7637 | 19750 | 0.0 | - | | 0.7656 | 19800 | 0.0 | - | | 0.7676 | 19850 | 0.0 | - | | 0.7695 | 19900 | 0.0 | - | | 0.7714 | 19950 | 0.0 | - | | 0.7734 | 20000 | 0.0 | - | | 0.7753 | 20050 | 0.0 | - | | 0.7772 | 20100 | 0.0 | - | | 0.7792 | 20150 | 0.0 | - | | 0.7811 | 20200 | 0.0 | - | | 0.7830 | 20250 | 0.0 | - | | 0.7850 | 20300 | 0.0 | - | | 0.7869 | 20350 | 0.0 | - | | 0.7888 | 20400 | 0.0 | - | | 0.7908 | 20450 | 0.0 | - | | 0.7927 | 20500 | 0.0 | - | | 0.7946 | 20550 | 0.0 | - | | 0.7966 | 20600 | 0.0 | - | | 0.7985 | 20650 | 0.0 | - | | 0.8004 | 20700 | 0.0 | - | | 0.8024 | 20750 | 0.0 | - | | 0.8043 | 20800 | 0.0 | - | | 0.8062 | 20850 | 0.0 | - | | 0.8082 | 20900 | 0.0 | - | | 0.8101 | 20950 | 0.0 | - | | 0.8120 | 21000 | 0.0 | - | | 0.8140 | 21050 | 0.0 | - | | 0.8159 | 21100 | 0.0 | - | | 0.8178 | 21150 | 0.0 | - | | 0.8198 | 21200 | 0.0002 | - | | 0.8217 | 21250 | 0.0027 | - | | 0.8236 | 21300 | 0.0019 | - | | 0.8256 | 21350 | 0.0 | - | | 0.8275 | 21400 | 0.0 | - | | 0.8294 | 21450 | 0.0 | - | | 0.8314 | 21500 | 0.0 | - | | 0.8333 | 21550 | 0.0011 | - | | 0.8352 | 21600 | 0.0 | - | | 0.8372 | 21650 | 0.0 | - | | 0.8391 | 21700 | 0.0 | - | | 0.8410 | 21750 | 0.0 | - | | 0.8430 | 21800 | 0.0 | - | | 0.8449 | 21850 | 0.0 | - | | 0.8468 | 21900 | 0.0 | - | | 0.8488 | 21950 | 0.0006 | - | | 0.8507 | 22000 | 0.0 | - | | 0.8526 | 22050 | 0.0 | - | | 0.8546 | 22100 | 0.0002 | - | | 0.8565 | 22150 | 0.0 | - | | 0.8584 | 22200 | 0.0011 | - | | 0.8604 | 22250 | 0.0 | - | | 0.8623 | 22300 | 0.0 | - | | 0.8642 | 22350 | 0.0 | - | | 0.8662 | 22400 | 0.0 | - | | 0.8681 | 22450 | 0.0 | - | | 0.8700 | 22500 | 0.0 | - | | 0.8720 | 22550 | 0.0 | - | | 0.8739 | 22600 | 0.0 | - | | 0.8758 | 22650 | 0.0 | - | | 0.8778 | 22700 | 0.0 | - | | 0.8797 | 22750 | 0.0 | - | | 0.8816 | 22800 | 0.0 | - | | 0.8836 | 22850 | 0.0 | - | | 0.8855 | 22900 | 0.0 | - | | 0.8874 | 22950 | 0.0 | - | | 0.8894 | 23000 | 0.0 | - | | 0.8913 | 23050 | 0.0 | - | | 0.8932 | 23100 | 0.0 | - | | 0.8952 | 23150 | 0.0 | - | | 0.8971 | 23200 | 0.0 | - | | 0.8990 | 23250 | 0.0 | - | | 0.9010 | 23300 | 0.0 | - | | 0.9029 | 23350 | 0.0 | - | | 0.9048 | 23400 | 0.0 | - | | 0.9068 | 23450 | 0.0 | - | | 0.9087 | 23500 | 0.0 | - | | 0.9106 | 23550 | 0.0 | - | | 0.9126 | 23600 | 0.0 | - | | 0.9145 | 23650 | 0.0 | - | | 0.9164 | 23700 | 0.0 | - | | 0.9184 | 23750 | 0.0 | - | | 0.9203 | 23800 | 0.0 | - | | 0.9222 | 23850 | 0.0 | - | | 0.9242 | 23900 | 0.0 | - | | 0.9261 | 23950 | 0.0 | - | | 0.9280 | 24000 | 0.0 | - | | 0.9300 | 24050 | 0.0 | - | | 0.9319 | 24100 | 0.0 | - | | 0.9338 | 24150 | 0.0 | - | | 0.9358 | 24200 | 0.0 | - | | 0.9377 | 24250 | 0.0 | - | | 0.9396 | 24300 | 0.0 | - | | 0.9416 | 24350 | 0.0 | - | | 0.9435 | 24400 | 0.0 | - | | 0.9454 | 24450 | 0.0 | - | | 0.9474 | 24500 | 0.0 | - | | 0.9493 | 24550 | 0.0 | - | | 0.9512 | 24600 | 0.0 | - | | 0.9532 | 24650 | 0.0 | - | | 0.9551 | 24700 | 0.0 | - | | 0.9570 | 24750 | 0.0 | - | | 0.9590 | 24800 | 0.0 | - | | 0.9609 | 24850 | 0.0 | - | | 0.9628 | 24900 | 0.0 | - | | 0.9648 | 24950 | 0.0 | - | | 0.9667 | 25000 | 0.0 | - | | 0.9686 | 25050 | 0.0 | - | | 0.9706 | 25100 | 0.0 | - | | 0.9725 | 25150 | 0.0 | - | | 0.9744 | 25200 | 0.0 | - | | 0.9764 | 25250 | 0.0 | - | | 0.9783 | 25300 | 0.0 | - | | 0.9802 | 25350 | 0.0 | - | | 0.9822 | 25400 | 0.0 | - | | 0.9841 | 25450 | 0.0 | - | | 0.9860 | 25500 | 0.0 | - | | 0.9880 | 25550 | 0.0 | - | | 0.9899 | 25600 | 0.0 | - | | 0.9918 | 25650 | 0.0 | - | | 0.9938 | 25700 | 0.0 | - | | 0.9957 | 25750 | 0.0 | - | | 0.9976 | 25800 | 0.0 | - | | 0.9996 | 25850 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.42.2 - PyTorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```