File size: 2,191 Bytes
1f16ecb
28dd6aa
 
 
 
 
 
 
 
 
 
1f16ecb
9d078f3
1f16ecb
644fa88
1f16ecb
9d078f3
1f16ecb
72b3c49
 
 
1f16ecb
72b3c49
 
 
 
 
 
 
1f16ecb
da82683
1f16ecb
72b3c49
1f16ecb
72b3c49
1f16ecb
72b3c49
1f16ecb
d662ff5
 
72b3c49
 
1f16ecb
134048a
 
1f16ecb
 
72b3c49
1f16ecb
72b3c49
1f16ecb
72b3c49
 
1f16ecb
134048a
9d078f3
72b3c49
1f16ecb
72b3c49
1f16ecb
72b3c49
1f16ecb
72b3c49
1f16ecb
72b3c49
1f16ecb
 
72b3c49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

---
license: apache-2.0
datasets:
- oscar-corpus/OSCAR-2109
language:
- en
- es
pipeline_tag: text-generation
library_name: transformers
---

# B-GPT_en_es_sequential

This is a bilingual GPT-2 style model. For the first half of training, this model was trained only on English data. In the second half of training, the model was trained on only Spanish data. At the end of training, 50% of training data seen by the model is English and 50% is Spanish. The tokenizer was trained on the same overall proportions of data as the language model at the final step. 

## Model details:

All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:

* Architecture: gpt2
* Parameters: 124770816
* Maximum sequence length: 512 tokens
* Training tokens: 12B
* Vocabulary size: 50000
* Compute cost: ~9 NVIDIA A6000 GPU hours
* CO2 Emission: 1.17 kg

Training dataset: [OSCAR 2021/09](https://huggingface.co./datasets/oscar-corpus/OSCAR-2109)

Checkpoints are taken at training steps: 0, 10000, 20000, 30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080, 64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200, 64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000, 70000, 80000, 90000, 100000, 110000, 120000, 128000.

## Use This Model

Load the model:

Note: if you do not specify a revision, it will load the final checkpoint of the model. See above for the list of checkpoints. The checkpoint step is the name of the revision.

```
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("catherinearnett/B-GPT_en_es_sequential")
model = AutoModel.from_pretrained("catherinearnett/B-GPT_en_es_sequential", revision = "128000")


````

Text Generation:

```
from transformers import pipeline

pipe = pipeline("text-generation", model="catherinearnett/B-GPT_en_es_sequential")
    
pipe("I am a")

```

## Citation

If you use this model, please cite:

```


```