laurentiubp commited on
Commit
f77d72d
1 Parent(s): 5c85e5b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -0
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ base_model: catallama/CataLlama-v0.2-Base
4
+ tags:
5
+ - llama
6
+ - llama-3
7
+ - Catalan
8
+ model-index:
9
+ - name: CataLlama-v0.2-Instruct-SFT
10
+ results: []
11
+ datasets:
12
+ - catallama/Catalan-Instruct-V2
13
+ language:
14
+ - ca
15
+ - en
16
+ pipeline_tag: text-generation
17
+ library_name: transformers
18
+ ---
19
+
20
+ ![](https://huggingface.co/catallama/CataLlama-v0.1-Instruct-DPO/resolve/main/CataLlama-v0.1.png)
21
+
22
+ # CataLlama-v0.2-Instruct-SFT
23
+
24
+ **CataLlama-v0.2-Instruct-SFT** is an instruct fine-tune of [catallama/CataLlama-v0.2-Base](https://huggingface.co/catallama/CataLlama-v0.2-Base) on the [catallama/Catalan-Instruct-V2](https://huggingface.co/datasets/catallama/Catalan-Instruct-V2) dataset.
25
+
26
+ CataLlama-v0.2 was trained on roughly **800 million new tokens** which is almost double compared to CataLlama-v0.1.
27
+
28
+ The model shows improved proficiency with the Catalan language while performing significantly better than CataLlama-v0.2 on all tasks.
29
+
30
+ **This is an instruction fine-tuned model proficient on the following tasks in Catalan**
31
+
32
+ - *Information extraction (suitable for RAG)*
33
+ - *Named Entity Recognition (NER)*
34
+ - *Translation from English to Catalan and Catalan to English*
35
+ - *Summarization - both short form and long form*
36
+ - *Sentiment analysis*
37
+
38
+
39
+ **Model developers** [Laurentiu Petrea](https://www.linkedin.com/in/laurentiupetrea/) based on Llama-3 from Meta.
40
+
41
+ **Model Architecture** CataLlama is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and direct preference optimisation (DPO) to align with human preferences for helpfulness and safety.
42
+
43
+ **License** The model uses the llama-3 license available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
44
+
45
+
46
+ ### Use with transformers
47
+
48
+ See the snippet below for usage with Transformers:
49
+
50
+ **The model follows the same prompt template as Llama-3 Instruct**
51
+
52
+ ```python
53
+ import transformers
54
+ import torch
55
+
56
+ model_id = "catallama/CataLlama-v0.2-Instruct-SFT"
57
+
58
+ pipeline = transformers.pipeline(
59
+ "text-generation",
60
+ model=model_id,
61
+ model_kwargs={"torch_dtype": torch.bfloat16},
62
+ device_map="auto",
63
+ )
64
+
65
+ messages = [
66
+ {"role": "user", "content": "Ei com estàs avui?"},
67
+ ]
68
+
69
+ prompt = pipeline.tokenizer.apply_chat_template(
70
+ messages,
71
+ tokenize=False,
72
+ add_generation_prompt=True
73
+ )
74
+
75
+ outputs = pipeline(
76
+ prompt,
77
+ max_new_tokens=1024,
78
+ do_sample=True,
79
+ temperature=0.6,
80
+ top_p=0.9,
81
+ )
82
+
83
+ print(outputs[0]["generated_text"][len(prompt):])
84
+ ```
85
+
86
+ ## Training procedure
87
+
88
+ The model was trained **with the same prompt template of Llama-3 Instruct**.
89
+
90
+ The model was trained for two epochs on **8x A100 80GB GPUs using DeepSpeed ZeRO** State-3 without CPU offloading.
91
+
92
+ Then training lasted approximately 8 hours for a total GPU cost of 150€.
93
+
94
+ ### Training hyperparameters
95
+
96
+ The following hyperparameters were used during training:
97
+ - learning_rate: 2e-05
98
+ - distributed_type: multi-GPU
99
+ - num_devices: 8
100
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
101
+ - lr_scheduler_type: cosine
102
+ - lr_scheduler_warmup_steps: 100
103
+ - num_epochs: 2
104
+
105
+
106
+ ## Intended Use
107
+
108
+ **Note:** This model is not intended to beat benchmarks, but to demonstrate techniques for augmenting LLMs on new languages and preserve rare languages as part of our world heritage.
109
+
110
+ **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
111
+
112
+ **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
113
+
114
+ **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.