File size: 4,478 Bytes
9bf7146
 
 
 
56be4e6
 
 
9bf7146
 
 
56be4e6
 
 
 
 
 
9bf7146
 
56be4e6
9bf7146
 
 
56be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233766a
62b10d9
 
 
 
 
56be4e6
62b10d9
9bf7146
56be4e6
9bf7146
56be4e6
9bf7146
56be4e6
9bf7146
56be4e6
 
 
9bf7146
56be4e6
9bf7146
56be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf7146
 
 
56be4e6
 
 
 
 
 
 
9bf7146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56be4e6
9bf7146
56be4e6
9bf7146
56be4e6
9bf7146
56be4e6
9bf7146
56be4e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: llama3
base_model: catallama/CataLlama-v0.2-Instruct-SFT
tags:
- llama
- llama-3
- catalan
model-index:
- name: CataLlama-v0.2-Instruct-DPO
  results: []
datasets:
- catallama/Catalan-DPO-V2
language:
- ca
- en
pipeline_tag: text-generation
---

![](https://huggingface.co./catallama/CataLlama-v0.2-Instruct-SFT/resolve/main/CataLlama-v0.2.png)

# CataLlama-v0.2-Instruct-DPO

**CataLlama-v0.2-Instruct-DPO** is a DPO fine-tune of [catallama/CataLlama-v0.2-Instruct-SFT](https://huggingface.co./catallama/CataLlama-v0.2-Instruct-SFT) on the [catallama/Catalan-DPO-V2](https://huggingface.co./datasets/catallama/Catalan-DPO-V2) dataset.

CataLlama-v0.2 was trained on roughly **620 million new tokens** which is almost 40% more than CataLlama-v0.1.

The DPO-V2 dataset has been completely rebuilt and it's almost twice the size of the DPO-V1 dataeset.

The model shows improved proficiency with the Catalan language.

**This is an instruction fine-tuned model, optimised with DPO, proficient on the following tasks in Catalan**

- *Information extraction (suitable for RAG)*
- *Named Entity Recognition (NER)*
- *Translation from English to Catalan and Catalan to English*
- *Summarization - both short form and long form*
- *Sentiment analysis*
- *Chat*

**Model developers** [Laurentiu Petrea](https://www.linkedin.com/in/laurentiupetrea/) based on Llama-3 from Meta.

**Model Architecture** CataLlama is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and direct preference optimisation (DPO) to align with human preferences for helpfulness and safety.

**License** The model uses the llama-3 license available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)


## Benchmarks

| Model              | CataLlama-v0.1-Instruct-DPO | CataLlama-v0.2-Instruct-DPO     |
| ------------------ | --------------------------- | ------------------------------- |
| MMLU 5 shot        | 47.34                       | **58.89**                       |
| GSM8K CoT 8 shot   | 43.29                       | **60.05**                       |


### Use with transformers

See the snippet below for usage with Transformers:

**The model follows the same prompt template as Llama-3 Instruct**

```python
import transformers
import torch

model_id = "catallama/CataLlama-v0.2-Instruct-DPO"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "user", "content": "Ei com estàs avui?"},
]

prompt = pipeline.tokenizer.apply_chat_template(
    messages, 
    tokenize=False, 
    add_generation_prompt=True
)

outputs = pipeline(
    prompt,
    max_new_tokens=1024,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)

print(outputs[0]["generated_text"][len(prompt):])
```

## Training procedure

The model was trained **with the same prompt template of Llama-3 Instruct**.

The model was trained for two epochs on **8x A100 80GB GPUs using DeepSpeed ZeRO** State-3 without CPU offloading.

Then training lasted approximately 3 hours for a total GPU cost of 45€.


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 2

## Intended Use

**Note:** This model is not intended to beat benchmarks, but to demonstrate techniques for augmenting LLMs on new languages and preserve rare languages as part of our world heritage.

**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.

**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.

**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.