File size: 27,164 Bytes
13666b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
---
base_model: indobenchmark/indobert-base-p2
datasets:
- afaji/indonli
language:
- id
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6915
- loss:SoftmaxLoss
widget:
- source_sentence: Pesta Olahraga Asia Tenggara atau Southeast Asian Games, biasa
    disingkat SEA Games, adalah ajang olahraga yang diadakan setiap dua tahun dan
    melibatkan 11 negara Asia Tenggara.
  sentences:
  - Sekarang tahun 2017.
  - Warna kulit tidak mempengaruhi waktu berjemur yang baik untuk mengatifkan pro-vitamin
    D3.
  - Pesta Olahraga Asia Tenggara diadakan setiap tahun.
- source_sentence: Menjalani aktivitas Ramadhan di tengah wabah Corona tentunya tidak
    mudah.
  sentences:
  - Tidak ada observasi yang pernah dilansir oleh Business Insider.
  - Wabah Corona membuat aktivitas Ramadhan tidak mudah dijalani.
  - Piala Sudirman pertama digelar pada tahun 1989.
- source_sentence: Dalam bidang politik, partai ini memperjuangkan agar kekuasaan
    sepenuhnya berada di tangan rakyat.
  sentences:
  - Galileo tidak berhasil mengetes hasil dari Hukum Inert.
  - Kudeta 14 Februari 1946 gagal merebut kekuasaan Belanda.
  - Partai ini berusaha agar kekuasaan sepenuhnya berada di tangan rakyat.
- source_sentence: Keluarga mendiang Prince menuduh layanan musik streaming Tidal
    memasukkan karya milik sang penyanyi legendaris tanpa izin .
  sentences:
  - Rosier adalah pelayan setia Lord Voldemort.
  - Bangunan ini digunakan untuk penjualan.
  - Keluarga mendiang Prince sudah memberi izin kepada TImbal untuk menggunakan lagu
    milik Prince.
- source_sentence: Tujuan dari acara dengar pendapat CRTC adalah untuk mengumpulkan
    respons dari pada pemangku kepentingan industri ini dan dari masyarakat umum.
  sentences:
  - Pembuat Rooms hanya bisa membuat meeting yang terbuka.
  - Masyarakat umum dilibatkan untuk memberikan respon dalam acara dengar pendapat
    CRTC.
  - Eminem dirasa tidak akan memulai kembali kariernya tahun ini.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.6086483919467034
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5957239631216208
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5922712402608701
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.587803408019803
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6025076942104072
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5921960802996976
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6142627736326208
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6070693135603054
      name: Spearman Dot
    - type: pearson_max
      value: 0.6142627736326208
      name: Pearson Max
    - type: spearman_max
      value: 0.6070693135603054
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.3358355665097759
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.30366523911959453
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.2926304091437024
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.2892617235512195
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.307849173953621
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.29286510016277595
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.3501215321086179
      name: Pearson Dot
    - type: spearman_dot
      value: 0.33369282261837974
      name: Spearman Dot
    - type: pearson_max
      value: 0.3501215321086179
      name: Pearson Max
    - type: spearman_max
      value: 0.33369282261837974
      name: Spearman Max
---

# SentenceTransformer based on indobenchmark/indobert-base-p2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co./indobenchmark/indobert-base-p2) on the [afaji/indonli](https://huggingface.co./datasets/afaji/indonli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co./indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [afaji/indonli](https://huggingface.co./datasets/afaji/indonli)
- **Language:** id
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cassador/4bs4lr2")
# Run inference
sentences = [
    'Tujuan dari acara dengar pendapat CRTC adalah untuk mengumpulkan respons dari pada pemangku kepentingan industri ini dan dari masyarakat umum.',
    'Masyarakat umum dilibatkan untuk memberikan respon dalam acara dengar pendapat CRTC.',
    'Pembuat Rooms hanya bisa membuat meeting yang terbuka.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6086     |
| **spearman_cosine** | **0.5957** |
| pearson_manhattan   | 0.5923     |
| spearman_manhattan  | 0.5878     |
| pearson_euclidean   | 0.6025     |
| spearman_euclidean  | 0.5922     |
| pearson_dot         | 0.6143     |
| spearman_dot        | 0.6071     |
| pearson_max         | 0.6143     |
| spearman_max        | 0.6071     |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.3358     |
| **spearman_cosine** | **0.3037** |
| pearson_manhattan   | 0.2926     |
| spearman_manhattan  | 0.2893     |
| pearson_euclidean   | 0.3078     |
| spearman_euclidean  | 0.2929     |
| pearson_dot         | 0.3501     |
| spearman_dot        | 0.3337     |
| pearson_max         | 0.3501     |
| spearman_max        | 0.3337     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### afaji/indonli

* Dataset: [afaji/indonli](https://huggingface.co./datasets/afaji/indonli)
* Size: 6,915 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                             | hypothesis                                                                        | label                                           |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                              | string                                                                            | int                                             |
  | details | <ul><li>min: 12 tokens</li><li>mean: 29.26 tokens</li><li>max: 135 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.13 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~51.00%</li><li>1: ~49.00%</li></ul> |
* Samples:
  | premise                                                                                                                                                                    | hypothesis                                                               | label          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|:---------------|
  | <code>Presiden Joko Widodo (Jokowi) menyampaikan prediksi bahwa wabah virus Corona (COVID-19) di Indonesia akan selesai akhir tahun ini.</code>                            | <code>Prediksi akhir wabah tidak disampaikan Jokowi.</code>              | <code>0</code> |
  | <code>Meski biasanya hanya digunakan di fasilitas kesehatan, saat ini masker dan sarung tangan sekali pakai banyak dipakai di tingkat rumah tangga.</code>                 | <code>Masker sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>1</code> |
  | <code>Seperti namanya, paket internet sahur Telkomsel ini ditujukan bagi pengguna yang menginginkan kuota ekstra, untuk menemani momen sahur sepanjang bulan puasa.</code> | <code>Paket internet sahur tidak ditujukan untuk saat sahur.</code>      | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Evaluation Dataset

#### afaji/indonli

* Dataset: [afaji/indonli](https://huggingface.co./datasets/afaji/indonli)
* Size: 1,556 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                            | hypothesis                                                                        | label                                           |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                             | string                                                                            | int                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 28.07 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.15 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~47.90%</li><li>1: ~52.10%</li></ul> |
* Samples:
  | premise                                                                                                                                                                                                                                                                        | hypothesis                                                                   | label          |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:---------------|
  | <code>Manuskrip tersebut berisi tiga catatan yang menceritakan bagaimana peristiwa jatuhnya meteorit serta laporan kematian akibat kejadian tersebut seperti dilansir dari Science Alert, Sabtu (25/4/2020).</code>                                                            | <code>Manuskrip tersebut tidak mencatat laporan kematian.</code>             | <code>0</code> |
  | <code>Dilansir dari Business Insider, menurut observasi dari Mauna Loa Observatory di Hawaii pada karbon dioksida (CO2) di level mencapai 410 ppm tidak langsung memberikan efek pada pernapasan, karena tubuh manusia juga masih membutuhkan CO2 dalam kadar tertentu.</code> | <code>Tidak ada observasi yang pernah dilansir oleh Business Insider.</code> | <code>0</code> |
  | <code>Seorang wanita asal New York mengaku sangat benci air putih.</code>                                                                                                                                                                                                      | <code>Tidak ada orang dari New York yang membenci air putih.</code>          | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
| 0      | 0    | -             | -      | 0.1277                  | -                        |
| 0.0578 | 100  | 0.706         | -      | -                       | -                        |
| 0.1157 | 200  | 0.6251        | -      | -                       | -                        |
| 0.1735 | 300  | 0.509         | -      | -                       | -                        |
| 0.2313 | 400  | 0.5822        | -      | -                       | -                        |
| 0.2892 | 500  | 0.6089        | -      | -                       | -                        |
| 0.3470 | 600  | 0.5497        | -      | -                       | -                        |
| 0.4049 | 700  | 0.6176        | -      | -                       | -                        |
| 0.4627 | 800  | 0.584         | -      | -                       | -                        |
| 0.5205 | 900  | 0.5317        | -      | -                       | -                        |
| 0.5784 | 1000 | 0.6706        | -      | -                       | -                        |
| 0.6362 | 1100 | 0.5508        | -      | -                       | -                        |
| 0.6940 | 1200 | 0.569         | -      | -                       | -                        |
| 0.7519 | 1300 | 0.6095        | -      | -                       | -                        |
| 0.8097 | 1400 | 0.5107        | -      | -                       | -                        |
| 0.8676 | 1500 | 0.5799        | -      | -                       | -                        |
| 0.9254 | 1600 | 0.5481        | -      | -                       | -                        |
| 0.9832 | 1700 | 0.4749        | -      | -                       | -                        |
| 1.0    | 1729 | -             | 0.4679 | 0.5346                  | -                        |
| 1.0411 | 1800 | 0.4321        | -      | -                       | -                        |
| 1.0989 | 1900 | 0.4594        | -      | -                       | -                        |
| 1.1567 | 2000 | 0.4428        | -      | -                       | -                        |
| 1.2146 | 2100 | 0.479         | -      | -                       | -                        |
| 1.2724 | 2200 | 0.3944        | -      | -                       | -                        |
| 1.3302 | 2300 | 0.434         | -      | -                       | -                        |
| 1.3881 | 2400 | 0.3981        | -      | -                       | -                        |
| 1.4459 | 2500 | 0.5058        | -      | -                       | -                        |
| 1.5038 | 2600 | 0.4254        | -      | -                       | -                        |
| 1.5616 | 2700 | 0.5089        | -      | -                       | -                        |
| 1.6194 | 2800 | 0.4669        | -      | -                       | -                        |
| 1.6773 | 2900 | 0.5093        | -      | -                       | -                        |
| 1.7351 | 3000 | 0.4673        | -      | -                       | -                        |
| 1.7929 | 3100 | 0.4964        | -      | -                       | -                        |
| 1.8508 | 3200 | 0.366         | -      | -                       | -                        |
| 1.9086 | 3300 | 0.5168        | -      | -                       | -                        |
| 1.9665 | 3400 | 0.4976        | -      | -                       | -                        |
| 2.0    | 3458 | -             | 0.4956 | 0.5756                  | -                        |
| 2.0243 | 3500 | 0.4112        | -      | -                       | -                        |
| 2.0821 | 3600 | 0.3139        | -      | -                       | -                        |
| 2.1400 | 3700 | 0.2579        | -      | -                       | -                        |
| 2.1978 | 3800 | 0.3207        | -      | -                       | -                        |
| 2.2556 | 3900 | 0.2962        | -      | -                       | -                        |
| 2.3135 | 4000 | 0.3924        | -      | -                       | -                        |
| 2.3713 | 4100 | 0.3059        | -      | -                       | -                        |
| 2.4291 | 4200 | 0.2762        | -      | -                       | -                        |
| 2.4870 | 4300 | 0.3425        | -      | -                       | -                        |
| 2.5448 | 4400 | 0.3165        | -      | -                       | -                        |
| 2.6027 | 4500 | 0.2786        | -      | -                       | -                        |
| 2.6605 | 4600 | 0.3183        | -      | -                       | -                        |
| 2.7183 | 4700 | 0.4492        | -      | -                       | -                        |
| 2.7762 | 4800 | 0.2414        | -      | -                       | -                        |
| 2.8340 | 4900 | 0.3064        | -      | -                       | -                        |
| 2.8918 | 5000 | 0.3164        | -      | -                       | -                        |
| 2.9497 | 5100 | 0.2612        | -      | -                       | -                        |
| 3.0    | 5187 | -             | 0.8414 | 0.6116                  | -                        |
| 3.0075 | 5200 | 0.318         | -      | -                       | -                        |
| 3.0654 | 5300 | 0.201         | -      | -                       | -                        |
| 3.1232 | 5400 | 0.1045        | -      | -                       | -                        |
| 3.1810 | 5500 | 0.1038        | -      | -                       | -                        |
| 3.2389 | 5600 | 0.1365        | -      | -                       | -                        |
| 3.2967 | 5700 | 0.1279        | -      | -                       | -                        |
| 3.3545 | 5800 | 0.2304        | -      | -                       | -                        |
| 3.4124 | 5900 | 0.1515        | -      | -                       | -                        |
| 3.4702 | 6000 | 0.1682        | -      | -                       | -                        |
| 3.5281 | 6100 | 0.2008        | -      | -                       | -                        |
| 3.5859 | 6200 | 0.1955        | -      | -                       | -                        |
| 3.6437 | 6300 | 0.103         | -      | -                       | -                        |
| 3.7016 | 6400 | 0.1482        | -      | -                       | -                        |
| 3.7594 | 6500 | 0.1093        | -      | -                       | -                        |
| 3.8172 | 6600 | 0.1478        | -      | -                       | -                        |
| 3.8751 | 6700 | 0.1708        | -      | -                       | -                        |
| 3.9329 | 6800 | 0.2399        | -      | -                       | -                        |
| 3.9907 | 6900 | 0.1805        | -      | -                       | -                        |
| 4.0    | 6916 | -             | 1.0672 | 0.5957                  | 0.3037                   |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->