--- {} --- # MPT-7b-8k-chat This model is originally released under CC-BY-NC-SA-4.0, and the AWQ framework is MIT licensed. Original model can be found at [https://huggingface.co./mosaicml/mpt-7b-8k-chat](https://huggingface.co./mosaicml/mpt-7b-8k-chat). ## ⚡ 4-bit Inference Speed Machines rented from RunPod - speed may vary dependent on both GPU/CPU. H100: - CUDA 12.0, Driver 525.105.17: 92 tokens/s (10.82 ms/token) RTX 4090 + Intel i9 13900K (2 different VMs): - CUDA 12.0, Driver 525.125.06: 134 tokens/s (7.46 ms/token) - CUDA 12.0, Driver 525.125.06: 117 tokens/s (8.52 ms/token) RTX 4090 + AMD EPYC 7-Series (3 different VMs): - CUDA 12.2, Driver 535.54.03: 53 tokens/s (18.6 ms/token) - CUDA 12.2, Driver 535.54.03: 56 tokens/s (17.71 ms/token) - CUDA 12.0, Driver 525.125.06: 55 tokens/ (18.15 ms/token) A6000 (2 different VMs): - CUDA 12.0, Driver 525.105.17: 61 tokens/s (16.31 ms/token) - CUDA 12.1, Driver 530.30.02: 46 tokens/s (21.79 ms/token) ## How to run Install [AWQ](https://github.com/mit-han-lab/llm-awq): ```sh git clone https://github.com/mit-han-lab/llm-awq && \ cd llm-awq && \ pip3 install -e . && \ cd awq/kernels && \ python3 setup.py install && \ cd ../.. && \ pip3 install einops ``` Run: ```sh hfuser="casperhansen" model_name="mpt-7b-8k-chat-awq" group_size=128 repo_path="$hfuser/$model_name" model_path="/workspace/llm-awq/$model_name" quantized_model_path="/workspace/llm-awq/$model_name/$model_name-w4-g$group_size.pt" git clone https://huggingface.co./$repo_path python3 tinychat/demo.py --model_type mpt \ --model_path $model_path \ --q_group_size $group_size \ --load_quant $quantized_model_path \ --precision W4A16 ``` ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-30B: Raising the bar for open-source foundation models}, year = {2023}, url = {www.mosaicml.com/blog/mpt-30b}, note = {Accessed: 2023-06-22}, urldate = {2023-06-22} } ```