Commit
·
eb5f831
1
Parent(s):
6cab518
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: plant-seedlings-freeze-0-6-aug-3-whole-data-train
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 1.0
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# plant-seedlings-freeze-0-6-aug-3-whole-data-train
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0001
|
35 |
+
- Accuracy: 1.0
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0002
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 20
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
+
| 0.6146 | 0.16 | 100 | 0.0402 | 1.0 |
|
68 |
+
| 0.6062 | 0.31 | 200 | 0.2393 | 1.0 |
|
69 |
+
| 0.4847 | 0.47 | 300 | 0.2164 | 1.0 |
|
70 |
+
| 0.5282 | 0.63 | 400 | 0.0427 | 1.0 |
|
71 |
+
| 0.4153 | 0.79 | 500 | 1.0996 | 0.0 |
|
72 |
+
| 0.3295 | 0.94 | 600 | 0.0499 | 1.0 |
|
73 |
+
| 0.3541 | 1.1 | 700 | 0.0009 | 1.0 |
|
74 |
+
| 0.4617 | 1.26 | 800 | 0.0106 | 1.0 |
|
75 |
+
| 0.3014 | 1.42 | 900 | 0.0045 | 1.0 |
|
76 |
+
| 0.3558 | 1.57 | 1000 | 0.0038 | 1.0 |
|
77 |
+
| 0.2357 | 1.73 | 1100 | 0.0140 | 1.0 |
|
78 |
+
| 0.3055 | 1.89 | 1200 | 0.0809 | 1.0 |
|
79 |
+
| 0.3278 | 2.04 | 1300 | 0.0077 | 1.0 |
|
80 |
+
| 0.3075 | 2.2 | 1400 | 0.0059 | 1.0 |
|
81 |
+
| 0.3462 | 2.36 | 1500 | 0.0377 | 1.0 |
|
82 |
+
| 0.2968 | 2.52 | 1600 | 0.0082 | 1.0 |
|
83 |
+
| 0.3392 | 2.67 | 1700 | 0.8628 | 0.0 |
|
84 |
+
| 0.2155 | 2.83 | 1800 | 0.0022 | 1.0 |
|
85 |
+
| 0.3521 | 2.99 | 1900 | 0.0671 | 1.0 |
|
86 |
+
| 0.3968 | 3.14 | 2000 | 0.0014 | 1.0 |
|
87 |
+
| 0.32 | 3.3 | 2100 | 0.0075 | 1.0 |
|
88 |
+
| 0.1787 | 3.46 | 2200 | 0.0015 | 1.0 |
|
89 |
+
| 0.2598 | 3.62 | 2300 | 0.0086 | 1.0 |
|
90 |
+
| 0.3424 | 3.77 | 2400 | 0.0008 | 1.0 |
|
91 |
+
| 0.2371 | 3.93 | 2500 | 0.0054 | 1.0 |
|
92 |
+
| 0.2773 | 4.09 | 2600 | 0.0028 | 1.0 |
|
93 |
+
| 0.3192 | 4.25 | 2700 | 0.0088 | 1.0 |
|
94 |
+
| 0.2173 | 4.4 | 2800 | 0.1174 | 1.0 |
|
95 |
+
| 0.2181 | 4.56 | 2900 | 0.0056 | 1.0 |
|
96 |
+
| 0.2476 | 4.72 | 3000 | 0.0006 | 1.0 |
|
97 |
+
| 0.2417 | 4.87 | 3100 | 0.0005 | 1.0 |
|
98 |
+
| 0.1915 | 5.03 | 3200 | 0.0002 | 1.0 |
|
99 |
+
| 0.149 | 5.19 | 3300 | 0.0004 | 1.0 |
|
100 |
+
| 0.1618 | 5.35 | 3400 | 0.1542 | 1.0 |
|
101 |
+
| 0.1752 | 5.5 | 3500 | 0.0001 | 1.0 |
|
102 |
+
| 0.1094 | 5.66 | 3600 | 0.0045 | 1.0 |
|
103 |
+
| 0.2532 | 5.82 | 3700 | 0.0016 | 1.0 |
|
104 |
+
| 0.1606 | 5.97 | 3800 | 0.0004 | 1.0 |
|
105 |
+
| 0.1781 | 6.13 | 3900 | 0.0007 | 1.0 |
|
106 |
+
| 0.1459 | 6.29 | 4000 | 0.0003 | 1.0 |
|
107 |
+
| 0.2357 | 6.45 | 4100 | 2.6113 | 0.0 |
|
108 |
+
| 0.2524 | 6.6 | 4200 | 0.0003 | 1.0 |
|
109 |
+
| 0.1708 | 6.76 | 4300 | 0.0006 | 1.0 |
|
110 |
+
| 0.1875 | 6.92 | 4400 | 0.0011 | 1.0 |
|
111 |
+
| 0.1462 | 7.08 | 4500 | 0.0004 | 1.0 |
|
112 |
+
| 0.1534 | 7.23 | 4600 | 0.0002 | 1.0 |
|
113 |
+
| 0.2834 | 7.39 | 4700 | 0.0003 | 1.0 |
|
114 |
+
| 0.2264 | 7.55 | 4800 | 0.0001 | 1.0 |
|
115 |
+
| 0.1007 | 7.7 | 4900 | 0.0001 | 1.0 |
|
116 |
+
| 0.2376 | 7.86 | 5000 | 0.0006 | 1.0 |
|
117 |
+
| 0.2233 | 8.02 | 5100 | 0.0002 | 1.0 |
|
118 |
+
| 0.1804 | 8.18 | 5200 | 0.0034 | 1.0 |
|
119 |
+
| 0.185 | 8.33 | 5300 | 0.0002 | 1.0 |
|
120 |
+
| 0.1149 | 8.49 | 5400 | 0.0007 | 1.0 |
|
121 |
+
| 0.2048 | 8.65 | 5500 | 0.0009 | 1.0 |
|
122 |
+
| 0.0786 | 8.81 | 5600 | 0.9478 | 0.0 |
|
123 |
+
| 0.2222 | 8.96 | 5700 | 0.0007 | 1.0 |
|
124 |
+
| 0.1289 | 9.12 | 5800 | 0.0009 | 1.0 |
|
125 |
+
| 0.2248 | 9.28 | 5900 | 0.0005 | 1.0 |
|
126 |
+
| 0.0987 | 9.43 | 6000 | 0.0002 | 1.0 |
|
127 |
+
| 0.2897 | 9.59 | 6100 | 0.0002 | 1.0 |
|
128 |
+
| 0.2023 | 9.75 | 6200 | 0.0042 | 1.0 |
|
129 |
+
| 0.1481 | 9.91 | 6300 | 0.0003 | 1.0 |
|
130 |
+
| 0.1224 | 10.06 | 6400 | 0.0009 | 1.0 |
|
131 |
+
| 0.1353 | 10.22 | 6500 | 0.0080 | 1.0 |
|
132 |
+
| 0.0659 | 10.38 | 6600 | 0.0006 | 1.0 |
|
133 |
+
| 0.1692 | 10.53 | 6700 | 0.0005 | 1.0 |
|
134 |
+
| 0.1713 | 10.69 | 6800 | 0.0006 | 1.0 |
|
135 |
+
| 0.1131 | 10.85 | 6900 | 0.0012 | 1.0 |
|
136 |
+
| 0.2325 | 11.01 | 7000 | 0.0003 | 1.0 |
|
137 |
+
| 0.0817 | 11.16 | 7100 | 0.0003 | 1.0 |
|
138 |
+
| 0.1854 | 11.32 | 7200 | 0.0001 | 1.0 |
|
139 |
+
| 0.0956 | 11.48 | 7300 | 0.0002 | 1.0 |
|
140 |
+
| 0.0758 | 11.64 | 7400 | 0.0127 | 1.0 |
|
141 |
+
| 0.0928 | 11.79 | 7500 | 0.0002 | 1.0 |
|
142 |
+
| 0.1563 | 11.95 | 7600 | 0.0004 | 1.0 |
|
143 |
+
| 0.0596 | 12.11 | 7700 | 0.0003 | 1.0 |
|
144 |
+
| 0.1266 | 12.26 | 7800 | 0.0031 | 1.0 |
|
145 |
+
| 0.1788 | 12.42 | 7900 | 0.0002 | 1.0 |
|
146 |
+
| 0.1663 | 12.58 | 8000 | 0.0071 | 1.0 |
|
147 |
+
| 0.064 | 12.74 | 8100 | 0.0003 | 1.0 |
|
148 |
+
| 0.1459 | 12.89 | 8200 | 0.0005 | 1.0 |
|
149 |
+
| 0.1237 | 13.05 | 8300 | 0.0001 | 1.0 |
|
150 |
+
| 0.1334 | 13.21 | 8400 | 0.0001 | 1.0 |
|
151 |
+
| 0.0802 | 13.36 | 8500 | 0.0001 | 1.0 |
|
152 |
+
| 0.1418 | 13.52 | 8600 | 0.0000 | 1.0 |
|
153 |
+
| 0.048 | 13.68 | 8700 | 0.0001 | 1.0 |
|
154 |
+
| 0.1267 | 13.84 | 8800 | 0.0121 | 1.0 |
|
155 |
+
| 0.1298 | 13.99 | 8900 | 0.0001 | 1.0 |
|
156 |
+
| 0.16 | 14.15 | 9000 | 0.0001 | 1.0 |
|
157 |
+
| 0.1295 | 14.31 | 9100 | 0.0001 | 1.0 |
|
158 |
+
| 0.1714 | 14.47 | 9200 | 0.0001 | 1.0 |
|
159 |
+
| 0.1377 | 14.62 | 9300 | 0.0001 | 1.0 |
|
160 |
+
| 0.1336 | 14.78 | 9400 | 0.0001 | 1.0 |
|
161 |
+
| 0.1293 | 14.94 | 9500 | 0.0001 | 1.0 |
|
162 |
+
| 0.111 | 15.09 | 9600 | 0.0001 | 1.0 |
|
163 |
+
| 0.0818 | 15.25 | 9700 | 0.0000 | 1.0 |
|
164 |
+
| 0.1884 | 15.41 | 9800 | 0.0001 | 1.0 |
|
165 |
+
| 0.1004 | 15.57 | 9900 | 0.0002 | 1.0 |
|
166 |
+
| 0.1029 | 15.72 | 10000 | 0.0000 | 1.0 |
|
167 |
+
| 0.0772 | 15.88 | 10100 | 0.0000 | 1.0 |
|
168 |
+
| 0.1573 | 16.04 | 10200 | 0.0001 | 1.0 |
|
169 |
+
| 0.0748 | 16.19 | 10300 | 0.0001 | 1.0 |
|
170 |
+
| 0.088 | 16.35 | 10400 | 0.0001 | 1.0 |
|
171 |
+
| 0.1062 | 16.51 | 10500 | 0.0001 | 1.0 |
|
172 |
+
| 0.0237 | 16.67 | 10600 | 0.0001 | 1.0 |
|
173 |
+
| 0.0729 | 16.82 | 10700 | 0.0000 | 1.0 |
|
174 |
+
| 0.1028 | 16.98 | 10800 | 0.0001 | 1.0 |
|
175 |
+
| 0.0423 | 17.14 | 10900 | 0.0000 | 1.0 |
|
176 |
+
| 0.0922 | 17.3 | 11000 | 0.0002 | 1.0 |
|
177 |
+
| 0.0788 | 17.45 | 11100 | 0.0001 | 1.0 |
|
178 |
+
| 0.0357 | 17.61 | 11200 | 0.0001 | 1.0 |
|
179 |
+
| 0.0519 | 17.77 | 11300 | 0.0000 | 1.0 |
|
180 |
+
| 0.108 | 17.92 | 11400 | 0.0001 | 1.0 |
|
181 |
+
| 0.1746 | 18.08 | 11500 | 0.1221 | 1.0 |
|
182 |
+
| 0.1 | 18.24 | 11600 | 0.0006 | 1.0 |
|
183 |
+
| 0.0798 | 18.4 | 11700 | 0.0001 | 1.0 |
|
184 |
+
| 0.0118 | 18.55 | 11800 | 0.0001 | 1.0 |
|
185 |
+
| 0.1151 | 18.71 | 11900 | 0.0001 | 1.0 |
|
186 |
+
| 0.0617 | 18.87 | 12000 | 0.0001 | 1.0 |
|
187 |
+
| 0.1577 | 19.03 | 12100 | 0.0001 | 1.0 |
|
188 |
+
| 0.1928 | 19.18 | 12200 | 0.0001 | 1.0 |
|
189 |
+
| 0.0462 | 19.34 | 12300 | 0.0001 | 1.0 |
|
190 |
+
| 0.0461 | 19.5 | 12400 | 0.3145 | 1.0 |
|
191 |
+
| 0.0454 | 19.65 | 12500 | 0.0001 | 1.0 |
|
192 |
+
| 0.0637 | 19.81 | 12600 | 0.0001 | 1.0 |
|
193 |
+
| 0.0733 | 19.97 | 12700 | 0.0001 | 1.0 |
|
194 |
+
|
195 |
+
|
196 |
+
### Framework versions
|
197 |
+
|
198 |
+
- Transformers 4.28.1
|
199 |
+
- Pytorch 2.0.0+cu118
|
200 |
+
- Datasets 2.11.0
|
201 |
+
- Tokenizers 0.13.3
|