carolinetfls commited on
Commit
6d6c0d9
·
1 Parent(s): 20d66d0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: plant-seedlings-freeze-0-6-aug-3-lr-decay
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.81286836935167
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # plant-seedlings-freeze-0-6-aug-3-lr-decay
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.5661
35
+ - Accuracy: 0.8129
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0002
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 13
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.5566 | 1.59 | 100 | 0.5549 | 0.8193 |
68
+ | 0.4338 | 3.17 | 200 | 0.5507 | 0.8212 |
69
+ | 0.4637 | 4.76 | 300 | 0.5418 | 0.8193 |
70
+ | 0.5061 | 6.35 | 400 | 0.5586 | 0.8139 |
71
+ | 0.3512 | 7.94 | 500 | 0.5550 | 0.8291 |
72
+ | 0.4779 | 9.52 | 600 | 0.5414 | 0.8256 |
73
+ | 0.449 | 11.11 | 700 | 0.5815 | 0.8055 |
74
+ | 0.5039 | 12.7 | 800 | 0.5661 | 0.8129 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.28.1
80
+ - Pytorch 2.0.0+cu118
81
+ - Datasets 2.11.0
82
+ - Tokenizers 0.13.3