--- library_name: transformers base_model: motheecreator/vit-Facial-Expression-Recognition tags: - generated_from_trainer metrics: - accuracy model-index: - name: FER-Facial-Expression-Recognition results: [] --- # FER-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co./motheecreator/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4710 - Accuracy: 0.8474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.8868 | 0.8959 | 100 | 1.7638 | 0.5923 | | 1.2277 | 1.7962 | 200 | 1.1092 | 0.7253 | | 0.8414 | 2.6965 | 300 | 0.8105 | 0.8041 | | 0.7076 | 3.5969 | 400 | 0.6746 | 0.8256 | | 0.6079 | 4.4972 | 500 | 0.6111 | 0.8287 | | 0.5624 | 5.3975 | 600 | 0.5529 | 0.8379 | | 0.5254 | 6.2979 | 700 | 0.5266 | 0.8399 | | 0.4784 | 7.1982 | 800 | 0.4978 | 0.8433 | | 0.4634 | 8.0985 | 900 | 0.4844 | 0.8458 | | 0.4305 | 8.9944 | 1000 | 0.4710 | 0.8474 | | 0.3995 | 9.8947 | 1100 | 0.4381 | 0.8564 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3