File size: 8,180 Bytes
5048e2a 177496d 5048e2a 177496d 757523a 177496d d6330eb 177496d e782413 177496d 757523a 177496d d6330eb 177496d d6330eb 177496d e782413 177496d d6330eb 177496d d6330eb 177496d d6330eb 177496d d6330eb 177496d d6330eb 177496d 5048e2a 177496d 35d19d3 177496d a4aa20a 177496d 6f22a10 177496d 393d908 177496d 6f22a10 177496d 478b2d8 6f22a10 177496d 6f22a10 177496d 6f22a10 177496d 6f22a10 177496d 6f22a10 177496d 6f22a10 177496d 6f22a10 177496d 478b2d8 177496d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
language: es
datasets:
- common_voice
- ciempiess_test
- hub4ne_es_LDC98S74
- callhome_es_LDC96S35
tags:
- audio
- automatic-speech-recognition
- spanish
- xlrs-53-spanish
- ciempiess
- cimpiess-unam
license: cc-by-4.0
widget:
model-index:
- name: wav2vec2-large-xlsr-53-spanish-ep5-944h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 10.0 (Test)
type: mozilla-foundation/common_voice_10_0
split: test
args:
language: es
metrics:
- name: WER
type: wer
value: 9.20
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 10.0 (Dev)
type: mozilla-foundation/common_voice_10_0
split: validation
args:
language: es
metrics:
- name: WER
type: wer
value: 8.02
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CIEMPIESS-TEST
type: ciempiess/ciempiess_test
split: test
args:
language: es
metrics:
- name: WER
type: wer
value: 11.17
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: 1997 Spanish Broadcast News Speech (HUB4-NE)
type: HUB4NE_LDC98S74
split: test
args:
language: es
metrics:
- name: WER
type: wer
value: 7.48
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CALLHOME Spanish Speech (Test)
type: callhome_LDC96S35
split: test
args:
language: es
metrics:
- name: WER
type: wer
value: 39.12
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CALLHOME Spanish Speech (Dev)
type: callhome_LDC96S35
split: validation
args:
language: es
metrics:
- name: WER
type: wer
value: 40.39
---
# wav2vec2-large-xlsr-53-spanish-ep5-944h
The "wav2vec2-large-xlsr-53-spanish-ep5-944h" is an acoustic model suitable for Automatic Speech Recognition in Spanish. It is the result of fine-tuning the model "facebook/wav2vec2-large-xlsr-53" for 5 epochs with around 944 hours of Spanish data gathered or developed by the [CIEMPIESS-UNAM Project](https://huggingface.co./ciempiess) since 2012. Most of the data is available at the the CIEMPIESS-UNAM Project homepage http://www.ciempiess.org/. The rest can be found in public repositories such as [LDC](https://www.ldc.upenn.edu/) or [OpenSLR](https://openslr.org/)
The specific list of corpora used to fine-tune the model is:
- [CIEMPIESS-LIGHT (18h25m)](https://catalog.ldc.upenn.edu/LDC2017S23)
- [CIEMPIESS-BALANCE (18h20m)](https://catalog.ldc.upenn.edu/LDC2018S11)
- [CIEMPIESS-FEM (13h54m)](https://catalog.ldc.upenn.edu/LDC2019S07)
- [CHM150 (1h38m)](https://catalog.ldc.upenn.edu/LDC2016S04)
- [TEDX_SPANISH (24h29m)](https://openslr.org/67/)
- [LIBRIVOX_SPANISH (73h01m)](https://catalog.ldc.upenn.edu/LDC2020S01)
- [WIKIPEDIA_SPANISH (25h37m)](https://catalog.ldc.upenn.edu/LDC2021S07)
- [VOXFORGE_SPANISH (49h42m)](http://www.voxforge.org/es)
- [MOZILLA COMMON VOICE 10.0 (320h22m)](https://commonvoice.mozilla.org/es)
- [HEROICO (16h33m)](https://catalog.ldc.upenn.edu/LDC2006S37)
- [LATINO-40 (6h48m)](https://catalog.ldc.upenn.edu/LDC95S28)
- [CALLHOME_SPANISH (13h22m)](https://catalog.ldc.upenn.edu/LDC96S35)
- [HUB4NE_SPANISH (31h41m)](https://catalog.ldc.upenn.edu/LDC98S74)
- [FISHER_SPANISH (127h22m)](https://catalog.ldc.upenn.edu/LDC2010S01)
- [Chilean Spanish speech data set (7h08m)](https://openslr.org/71/)
- [Colombian Spanish speech data set (7h34m)](https://openslr.org/72/)
- [Peruvian Spanish speech data set (9h13m)](https://openslr.org/73/)
- [Argentinian Spanish speech data set (8h01m)](https://openslr.org/61/)
- [Puerto Rico Spanish speech data set (1h00m)](https://openslr.org/74/)
- [MediaSpeech Spanish (10h00m)](https://openslr.org/108/)
- [DIMEX100-LIGHT (6h09m)](https://turing.iimas.unam.mx/~luis/DIME/CORPUS-DIMEX.html)
- [DIMEX100-NIÑOS (08h09m)](https://turing.iimas.unam.mx/~luis/DIME/CORPUS-DIMEX.html)
- [GOLEM-UNIVERSUM (00h10m)](https://turing.iimas.unam.mx/~luis/DIME/CORPUS-DIMEX.html)
- [GLISSANDO (6h40m)](https://glissando.labfon.uned.es/es)
- TELE_con_CIENCIA (28h16m) **Unplished Material**
- UNSHAREABLE MATERIAL (118h22m) **Not available for sharing**
The fine-tuning process was performed during November (2022) in the servers of the Language and Voice Lab (https://lvl.ru.is/) at Reykjavík University (Iceland) by Carlos Daniel Hernández Mena.
# Evaluation
```python
import torch
from transformers import Wav2Vec2Processor
from transformers import Wav2Vec2ForCTC
#Load the processor and model.
MODEL_NAME="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-spanish-ep5-944h"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
#Load the dataset
from datasets import load_dataset, load_metric, Audio
ds=load_dataset("ciempiess/ciempiess_test", split="test")
#Downsample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
#Process the dataset
def prepare_dataset(batch):
audio = batch["audio"]
#Batched output is "un-batched" to ensure mapping is correct
batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
with processor.as_target_processor():
batch["labels"] = processor(batch["normalized_text"]).input_ids
return batch
ds = ds.map(prepare_dataset, remove_columns=ds.column_names,num_proc=1)
#Define the evaluation metric
import numpy as np
wer_metric = load_metric("wer")
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
#We do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
#Do the evaluation (with batch_size=1)
model = model.to(torch.device("cuda"))
def map_to_result(batch):
with torch.no_grad():
input_values = torch.tensor(batch["input_values"], device="cuda").unsqueeze(0)
logits = model(input_values).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_str"] = processor.batch_decode(pred_ids)[0]
batch["sentence"] = processor.decode(batch["labels"], group_tokens=False)
return batch
results = ds.map(map_to_result,remove_columns=ds.column_names)
#Compute the overall WER now.
print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["sentence"])))
```
**Test Result**: 0.112
# BibTeX entry and citation info
*When publishing results based on these models please refer to:*
```bibtex
@misc{mena2022xlrs53spanish,
title={Acoustic Model in Spanish: wav2vec2-large-xlsr-53-spanish-ep5-944h.},
author={Hernandez Mena, Carlos Daniel},
year={2022},
url={https://huggingface.co./carlosdanielhernandezmena/wav2vec2-large-xlsr-53-spanish-ep5-944h},
}
```
# Acknowledgements
The author wants to thank to the social service program ["Desarrollo de Tecnologías del Habla"](http://profesores.fi-b.unam.mx/carlos_mena/servicio.html) at the [Facultad de Ingeniería (FI)](https://www.ingenieria.unam.mx/) of the [Universidad Nacional Autónoma de México (UNAM)](https://www.unam.mx/). He also thanks to the social service students for all the hard work.
Special thanks to Jón Guðnason, head of the Language and Voice Lab for providing computational power to make this model possible. The author also thanks to the "Language Technology Programme for Icelandic 2019-2023" which is managed and coordinated by Almannarómur, and it is funded by the Icelandic Ministry of Education, Science and Culture.
|