File size: 4,691 Bytes
f081e16 7a00f13 771c94b f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 f081e16 7a00f13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
tags:
- generated_from_keras_callback
- feature-extraction
- sentence-similarity
license: apache-2.0
datasets:
- carlesoctav/en-id-parallel-sentences-embedding
- carlesoctav/en-id-parallel-sentences
language:
- en
- id
---
# MultiQA-mMini-L6-H384
This model is a fine-tuned version of [nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large](https://huggingface.co./nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large) on the [carlesoctav/en-id-parallel-sentences](https://huggingface.co./datasets/carlesoctav/en-id-parallel-sentences) dataset using the following procedure: [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://paperswithcode.com/paper/making-monolingual-sentence-embeddings). It achieves 92% accuracy on the validation split of the dataset for the English-Indonesian language pair in the bitext mining task.
## Model Description
Since we followed the approach outlined in [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://paperswithcode.com/paper/making-monolingual-sentence-embeddings), we used [sentence-transformers/multi-qa-MiniLM-L6-dot-v1](https://huggingface.co./sentence-transformers/multi-qa-MiniLM-L6-dot-v1) as the teacher model and [nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large](https://huggingface.co./nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large) as the student model (multilingual).
Example of usage:
```python
from transformers import AutoTokenizer, AutoModel
import torch
#CLS Pooling - Take output from first token
def cls_pooling(model_output):
return model_output.last_hidden_state[:,0]
#Encode text
def encode(texts):
# Tokenize sentences
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
# Perform pooling
embeddings = cls_pooling(model_output)
return embeddings
# Sentences we want sentence embeddings for
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district", "sekitar 9 juta orang tinggal di london", " London terkenal sebagai distrik finansial"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("carlesoctav/multi-qa-en-id-mMiniLMv2-L6-H384")
model = AutoModel.from_pretrained("carlesoctav/multi-qa-en-id-mMiniLMv2-L6-H384", from_tf = True)
#Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)
#Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
Take a look at the demo on Google Colab [here](https://colab.research.google.com/drive/1EZb0qACRIug9BVRX7LziKPchpYBUru9e#scrollTo=tZAjbx-_AOsg).
## Intended Uses & Limitations
Our model is intended to be used for semantic search. It encodes queries/questions and text paragraphs into dense vectors, allowing it to find relevant documents based on the given passages.
The model is designed to create sentence embeddings specifically for semantic search and information retrieval tasks. As the student model, it inherits this capability from the fine-tuned teacher model. It supports both English and Indonesian languages, making it suitable for cross-lingual information retrieval tasks.
Please note that there is a limit of 256 word pieces, and any text longer than that will be truncated. Additionally, the model was trained using input text up to 80 word pieces, so it may not perform optimally on longer text.
In the following some technical details how this model must be used:
| Setting | Value |
| --- | :---: |
| Dimensions | 384 |
| Produces normalized embeddings | No |
| Pooling-Method | CLS pooling |
| Suitable score functions | dot-product (e.g. `util.dot_score`) |
----
## Training and Evaluation Data
We utilized the [carlesoctav/en-id-parallel-sentences](https://huggingface.co./datasets/carlesoctav/en-id-parallel-sentences) dataset for training and evaluation purposes. The data was dynamically split into 95% for training and 5% for validation.
## Training Procedure
The complete training script can be found in the current repository under the name `train.py`.
### Framework Versions
The following framework versions were used:
- Transformers 4.29.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3 |