model update
Browse files- README.md +88 -0
- best_run_hyperparameters.json +1 -0
- metric.json +1 -0
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- cardiffnlp/tweet_sentiment_multilingual
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: cardiffnlp/xlm-roberta-base-sentiment-multilingual
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: text-classification
|
12 |
+
name: Text Classification
|
13 |
+
dataset:
|
14 |
+
name: cardiffnlp/tweet_sentiment_multilingual
|
15 |
+
type: all
|
16 |
+
split: test
|
17 |
+
metrics:
|
18 |
+
- name: Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all)
|
19 |
+
type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all
|
20 |
+
value: 0.665948275862069
|
21 |
+
- name: Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all)
|
22 |
+
type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all
|
23 |
+
value: 0.6628627126803655
|
24 |
+
- name: Accuracy (cardiffnlp/tweet_sentiment_multilingual/all)
|
25 |
+
type: accuracy_cardiffnlp/tweet_sentiment_multilingual/all
|
26 |
+
value: 0.665948275862069
|
27 |
+
pipeline_tag: text-classification
|
28 |
+
widget:
|
29 |
+
- text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}
|
30 |
+
example_title: "topic_classification 1"
|
31 |
+
- text: Yes, including Medicare and social security saving👍
|
32 |
+
example_title: "sentiment 1"
|
33 |
+
- text: All two of them taste like ass.
|
34 |
+
example_title: "offensive 1"
|
35 |
+
- text: If you wanna look like a badass, have drama on social media
|
36 |
+
example_title: "irony 1"
|
37 |
+
- text: Whoever just unfollowed me you a bitch
|
38 |
+
example_title: "hate 1"
|
39 |
+
- text: I love swimming for the same reason I love meditating...the feeling of weightlessness.
|
40 |
+
example_title: "emotion 1"
|
41 |
+
- text: Beautiful sunset last night from the pontoon @TupperLakeNY
|
42 |
+
example_title: "emoji 1"
|
43 |
+
---
|
44 |
+
# cardiffnlp/xlm-roberta-base-sentiment-multilingual
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the
|
47 |
+
[`cardiffnlp/tweet_sentiment_multilingual (all)`](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)
|
48 |
+
via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp).
|
49 |
+
Training split is `train` and parameters have been tuned on the validation split `validation`.
|
50 |
+
|
51 |
+
Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/xlm-roberta-base-sentiment-multilingual/raw/main/metric.json)).
|
52 |
+
|
53 |
+
- F1 (micro): 0.665948275862069
|
54 |
+
- F1 (macro): 0.6628627126803655
|
55 |
+
- Accuracy: 0.665948275862069
|
56 |
+
|
57 |
+
### Usage
|
58 |
+
Install tweetnlp via pip.
|
59 |
+
```shell
|
60 |
+
pip install tweetnlp
|
61 |
+
```
|
62 |
+
Load the model in python.
|
63 |
+
```python
|
64 |
+
import tweetnlp
|
65 |
+
model = tweetnlp.Classifier("cardiffnlp/xlm-roberta-base-sentiment-multilingual", max_length=128)
|
66 |
+
model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}')
|
67 |
+
```
|
68 |
+
|
69 |
+
### Reference
|
70 |
+
|
71 |
+
```
|
72 |
+
@inproceedings{dimosthenis-etal-2022-twitter,
|
73 |
+
title = "{T}witter {T}opic {C}lassification",
|
74 |
+
author = "Antypas, Dimosthenis and
|
75 |
+
Ushio, Asahi and
|
76 |
+
Camacho-Collados, Jose and
|
77 |
+
Neves, Leonardo and
|
78 |
+
Silva, Vitor and
|
79 |
+
Barbieri, Francesco",
|
80 |
+
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
|
81 |
+
month = oct,
|
82 |
+
year = "2022",
|
83 |
+
address = "Gyeongju, Republic of Korea",
|
84 |
+
publisher = "International Committee on Computational Linguistics"
|
85 |
+
}
|
86 |
+
```
|
87 |
+
|
88 |
+
|
best_run_hyperparameters.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"learning_rate": 1.717762111233842e-05, "num_train_epochs": 2, "per_device_train_batch_size": 16}
|
metric.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eval_loss": 0.7858790159225464, "eval_f1": 0.665948275862069, "eval_f1_macro": 0.6628627126803655, "eval_accuracy": 0.665948275862069, "eval_runtime": 18.1704, "eval_samples_per_second": 383.04, "eval_steps_per_second": 47.88}
|