File size: 2,723 Bytes
3f3ed66 9f7b583 3f3ed66 5916057 a483d02 3f3ed66 1941b34 3f3ed66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language: english
widget:
- text: "Covid cases are increasing fast!"
---
# Twitter-roBERTa-base for Sentiment Analysis - UPDATED (2021)
This is a roBERTa-base model trained on ~124M tweets from January 2018 to December 2021 (see [here](https://huggingface.co./cardiffnlp/twitter-roberta-base-2021-124m)), and finetuned for sentiment analysis with the TweetEval benchmark.
The original roBERTa-base model can be found [here](https://huggingface.co./cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English.
- Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829).
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).
<b>Labels</b>:
0 -> Negative;
1 -> Neutral;
2 -> Positive
## Example Pipeline
```python
from transformers import pipeline
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Covid cases are increasing fast!")
```
```
[{'label': 'Negative', 'score': 0.7236}]
```
## Full classification example
```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
#model.save_pretrained(MODEL)
text = "Covid cases are increasing fast!"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)
# text = "Covid cases are increasing fast!"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l} {np.round(float(s), 4)}")
```
Output:
```
1) Negative 0.7236
2) Neutral 0.2287
3) Positive 0.0477
``` |