--- license: mit datasets: - cardiffnlp/super_tweeteval language: - en pipeline_tag: text-classification --- # cardiffnlp/twitter-roberta-base-intimacy-latest This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for intimacy analysis (regression on a single text) on the _TweetIntimacy_ dataset of [SuperTweetEval](https://huggingface.co./datasets/cardiffnlp/super_tweeteval). The original Twitter-based RoBERTa model can be found [here](https://huggingface.co./cardiffnlp/twitter-roberta-base-2022-154m). ## Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch.nn.functional as F model_name = "cardiffnlp/twitter-roberta-base-intimacy-latest" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) text= '@user Furthermore, harassment is ILLEGAL in any form!' # with pipeline pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) pipe(text) >> [{'label': 'LABEL_0', 'score': 0.5492708086967468}] # alternatively logits = model(**tokenizer(text, return_tensors="pt")) prob = F.sigmoid(logits.logits).item() >> 0.5492708086967468 ``` ## Citation Information Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. ```bibtex @inproceedings{antypas2023supertweeteval, title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, year={2023} } ```