Update README.md
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# twitter-roberta-base-emotion-multilabel-latest
|
16 |
|
17 |
-
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-
|
18 |
[`SemEval 2018 - Task 1 Affect in Tweets`](https://aclanthology.org/S18-1001/) `(subtask: E-c / multilabel classification)`.
|
19 |
|
20 |
|
@@ -23,9 +23,9 @@ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2021-124m
|
|
23 |
|
24 |
Following metrics are achieved on the test split:
|
25 |
|
26 |
-
- F1 (micro): 0.
|
27 |
-
- F1 (macro): 0.
|
28 |
-
- Jaccard Index (samples): 0.
|
29 |
|
30 |
### Usage
|
31 |
#### 1. [tweetnlp](https://pypi.org/project/tweetnlp/)
|
@@ -39,9 +39,9 @@ import tweetnlp
|
|
39 |
|
40 |
model = tweetnlp.load_model('topic_classification', model_name='cardiffnlp/twitter-roberta-base-emotion-multilabel-latest')
|
41 |
|
42 |
-
model.predict("I
|
43 |
|
44 |
-
>> {'label': ['joy', '
|
45 |
|
46 |
```
|
47 |
#### 2. pipeline
|
@@ -56,18 +56,17 @@ pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-em
|
|
56 |
|
57 |
pipe("I am so happy and sad at the same time")
|
58 |
|
59 |
-
>> [[{'label': 'anger', 'score': 0.
|
60 |
-
{'label': 'anticipation', 'score': 0.
|
61 |
-
{'label': 'disgust', 'score': 0.
|
62 |
-
{'label': 'fear', 'score': 0.
|
63 |
-
{'label': 'joy', 'score': 0.
|
64 |
-
{'label': 'love', 'score': 0.
|
65 |
-
{'label': 'optimism', 'score': 0.
|
66 |
-
{'label': 'pessimism', 'score': 0.
|
67 |
-
{'label': 'sadness', 'score': 0.
|
68 |
-
{'label': 'surprise', 'score': 0.
|
69 |
-
{'label': 'trust', 'score': 0.
|
70 |
-
|
71 |
```
|
72 |
|
73 |
|
|
|
14 |
|
15 |
# twitter-roberta-base-emotion-multilabel-latest
|
16 |
|
17 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2022-154m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m) on the
|
18 |
[`SemEval 2018 - Task 1 Affect in Tweets`](https://aclanthology.org/S18-1001/) `(subtask: E-c / multilabel classification)`.
|
19 |
|
20 |
|
|
|
23 |
|
24 |
Following metrics are achieved on the test split:
|
25 |
|
26 |
+
- F1 (micro): 0.7169
|
27 |
+
- F1 (macro): 0.5464
|
28 |
+
- Jaccard Index (samples): 0.5970:
|
29 |
|
30 |
### Usage
|
31 |
#### 1. [tweetnlp](https://pypi.org/project/tweetnlp/)
|
|
|
39 |
|
40 |
model = tweetnlp.load_model('topic_classification', model_name='cardiffnlp/twitter-roberta-base-emotion-multilabel-latest')
|
41 |
|
42 |
+
model.predict("I bet everything will work out in the end :)")
|
43 |
|
44 |
+
>> {'label': ['joy', 'optimism']}
|
45 |
|
46 |
```
|
47 |
#### 2. pipeline
|
|
|
56 |
|
57 |
pipe("I am so happy and sad at the same time")
|
58 |
|
59 |
+
>> [[{'label': 'anger', 'score': 0.018903767690062523},
|
60 |
+
{'label': 'anticipation', 'score': 0.28172484040260315},
|
61 |
+
{'label': 'disgust', 'score': 0.011607927270233631},
|
62 |
+
{'label': 'fear', 'score': 0.036411102861166},
|
63 |
+
{'label': 'joy', 'score': 0.8812029361724854},
|
64 |
+
{'label': 'love', 'score': 0.09591569006443024},
|
65 |
+
{'label': 'optimism', 'score': 0.9810988306999207},
|
66 |
+
{'label': 'pessimism', 'score': 0.016823478043079376},
|
67 |
+
{'label': 'sadness', 'score': 0.01889917254447937},
|
68 |
+
{'label': 'surprise', 'score': 0.02702752873301506},
|
69 |
+
{'label': 'trust', 'score': 0.4155798852443695}]]
|
|
|
70 |
```
|
71 |
|
72 |
|