--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - HHD - 3_class - ViT - generated_from_trainer model-index: - name: ViT_face results: [] --- # ViT_face This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the face dataset. It achieves the following results on the evaluation set: - Loss: 0.5240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 38 | 0.9844 | | No log | 2.0 | 76 | 0.8261 | | No log | 3.0 | 114 | 0.6908 | | No log | 4.0 | 152 | 0.6297 | | No log | 5.0 | 190 | 0.5770 | | No log | 6.0 | 228 | 0.5463 | | No log | 7.0 | 266 | 0.5250 | | No log | 8.0 | 304 | 0.5263 | | No log | 9.0 | 342 | 0.5306 | | No log | 10.0 | 380 | 0.5240 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1