File size: 3,184 Bytes
33dd8b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ff63b
33dd8b4
 
 
 
 
 
 
 
 
a9ff63b
 
33dd8b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ff63b
 
33dd8b4
 
a9ff63b
33dd8b4
 
 
a9ff63b
33dd8b4
 
 
 
 
a9ff63b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33dd8b4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---

license: apache-2.0
base_model: microsoft/swinv2-large-patch4-window12-192-22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-large-patch4-window12-192-22k-baseline
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8765432098765432
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-large-patch4-window12-192-22k-baseline

This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12-192-22k](https://huggingface.co./microsoft/swinv2-large-patch4-window12-192-22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3489
- Accuracy: 0.8765

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 18

- eval_batch_size: 18

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1721        | 1.0   | 20   | 0.8152          | 0.7407   |
| 0.5878        | 2.0   | 40   | 0.4285          | 0.8395   |
| 0.5201        | 3.0   | 60   | 0.5102          | 0.8148   |
| 0.3366        | 4.0   | 80   | 0.3463          | 0.8519   |
| 0.2792        | 5.0   | 100  | 0.4444          | 0.8272   |
| 0.2807        | 6.0   | 120  | 0.3282          | 0.8765   |
| 0.1978        | 7.0   | 140  | 0.3047          | 0.8642   |
| 0.2262        | 8.0   | 160  | 0.4534          | 0.8765   |
| 0.176         | 9.0   | 180  | 0.3605          | 0.8148   |
| 0.17          | 10.0  | 200  | 0.4222          | 0.8642   |
| 0.1445        | 11.0  | 220  | 0.3569          | 0.9012   |
| 0.128         | 12.0  | 240  | 0.4649          | 0.8642   |
| 0.1316        | 13.0  | 260  | 0.3848          | 0.8765   |
| 0.1772        | 14.0  | 280  | 0.4242          | 0.8395   |
| 0.1087        | 15.0  | 300  | 0.3756          | 0.8889   |
| 0.0858        | 16.0  | 320  | 0.4190          | 0.8519   |
| 0.1136        | 17.0  | 340  | 0.4902          | 0.8765   |
| 0.0425        | 18.0  | 360  | 0.3041          | 0.9012   |
| 0.07          | 19.0  | 380  | 0.3456          | 0.8889   |
| 0.0595        | 20.0  | 400  | 0.3489          | 0.8765   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1