File size: 18,861 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
# This config contains the default values for training a modified ContextNet model with Transducer loss and BPE-based vocabulary.
# In contrast to original ContextNet, the same number of filters is used throughout the model.
# Default learning parameters in this config are set for effective batch size of 1k on 32 GPUs.
# To train it with smaller batch sizes, you may need to re-tune the learning parameters or use higher accumulate_grad_batches.
# It contains the default values for training a ContextNet ASR model, large size (~144M) with Transducer loss and sub-word encoding.
# Architecture and training config:
# Default learning parameters in this config are set for effective batch size of 1K. To train it with smaller effective
# batch sizes, you may need to re-tune the learning parameters or use higher accumulate_grad_batches.
# Here are the recommended configs for different variants of ContextNet, other parameters are the same as in this config file.
#
# +-------------+---------+------------+
# | Model | filters | time_masks |
# +=============+=========+============+
# | Small (14M)| 256 | 2 |
# +-------------+---------+------------+
# | Medium (40M)| 512 | 5 |
# +-------------+---------+------------+
# | Large (145M)| 1024 | 10 |
# +-------------------------------------
name: &name "ContextNet-8x-Stride-RNNT"
model:
sample_rate: 16000
compute_eval_loss: false # eval samples can be very long and exhaust memory. Disable computation of transducer loss during validation/testing with this flag.
train_ds:
manifest_filepath: ???
sample_rate: ${model.sample_rate}
batch_size: 16 # Can be increased if memory allows or when using smaller model
trim_silence: false
max_duration: 16.7
shuffle: true
use_start_end_token: false
num_workers: 16
pin_memory: true
# tarred datasets
is_tarred: false
tarred_audio_filepaths: null
tarred_shard_strategy: "scatter"
shuffle_n: 2048
# bucketing params
bucketing_strategy: "synced_randomized"
bucketing_batch_size: null
validation_ds:
manifest_filepath: ???
sample_rate: ${model.sample_rate}
batch_size: 8
shuffle: false
use_start_end_token: false
num_workers: 16
pin_memory: true
test_ds:
manifest_filepath: null
sample_rate: ${model.sample_rate}
batch_size: 8
shuffle: false
use_start_end_token: false
num_workers: 16
pin_memory: true
model_defaults:
filters: 1024
repeat: 5
dropout: 0.1
separable: true
se: true
se_context_size: -1
kernel_size_factor: 1.0
# encoder / decoder / joint values
enc_hidden: 640
pred_hidden: 640
joint_hidden: 640
tokenizer:
dir: ??? # path to directory which contains either tokenizer.model (bpe) or vocab.txt (for wpe)
type: ??? # Can be either bpe or wpe
preprocessor:
_target_: nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor
sample_rate: ${model.sample_rate}
normalize: "per_feature"
window_size: 0.025
window_stride: 0.01
window: "hann"
features: &n_mels 80
n_fft: 512
frame_splicing: 1
dither: 0.00001
pad_to: 16
stft_conv: false
spec_augment:
_target_: nemo.collections.asr.modules.SpectrogramAugmentation
freq_masks: 2 # should be kept at 2
time_masks: 10 # can be 5 for small-med models, 10 for larger models.
freq_width: 27
time_width: 0.05
encoder:
_target_: nemo.collections.asr.modules.ConvASREncoder
feat_in: *n_mels
activation: swish
conv_mask: true
init_mode: "tds_uniform"
jasper:
- filters: ${model.model_defaults.filters}
repeat: 1
kernel: [5]
stride: [1]
dilation: [1]
dropout: 0.0
residual: false
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [2]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
stride_last: true
residual_mode: "stride_add"
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [2] # *stride
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
stride_last: true
residual_mode: "stride_add"
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [2] # stride
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
stride_last: true
residual_mode: "stride_add"
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.filters}
repeat: ${model.model_defaults.repeat}
kernel: [5]
stride: [1]
dilation: [1]
dropout: ${model.model_defaults.dropout}
residual: true
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
- filters: ${model.model_defaults.enc_hidden}
repeat: 1
kernel: [5]
stride: [1]
dilation: [1]
dropout: 0.0
residual: false
separable: ${model.model_defaults.separable}
se: ${model.model_defaults.se}
se_context_size: ${model.model_defaults.se_context_size}
kernel_size_factor: ${model.model_defaults.kernel_size_factor}
decoder:
_target_: nemo.collections.asr.modules.RNNTDecoder
normalization_mode: null # Currently only null is supported for export.
random_state_sampling: false # Random state sampling: https://arxiv.org/pdf/1910.11455.pdf
blank_as_pad: true # This flag must be set in order to support exporting of RNNT models + efficient inference.
prednet:
pred_hidden: ${model.model_defaults.pred_hidden}
pred_rnn_layers: 1 # only 1 layer LSTM networks are exportable.
t_max: null # Maximum possible target seq length used for Chrono Initialization - https://arxiv.org/abs/1804.11188. Disabled by default.
dropout: 0.1
joint:
_target_: nemo.collections.asr.modules.RNNTJoint
log_softmax: null # sets it according to cpu/gpu device
preserve_memory: false # dramatically slows down training, but might preserve some memory
# Fuses the computation of prediction net + joint net + loss + WER calculation
# to be run on sub-batches of size `fused_batch_size`.
# When this flag is set to true, consider the `batch_size` of *_ds to be just `encoder` batch size.
# `fused_batch_size` is the actual batch size of the prediction net, joint net and transducer loss.
# Using small values here will preserve a lot of memory during training, but will make training slower as well.
# An optimal ratio of fused_batch_size : *_ds.batch_size is 1:1.
# However, to preserve memory, this ratio can be 1:8 or even 1:16.
# Extreme case of 1:B (i.e. fused_batch_size=1) should be avoided as training speed would be very slow.
fuse_loss_wer: true
fused_batch_size: 16
jointnet:
joint_hidden: ${model.model_defaults.joint_hidden}
activation: "relu"
dropout: 0.1
# RNNT decoding strategy
decoding:
strategy: "greedy_batch" # can be greedy, greedy_batch, beam, tsd, alsd.
# greedy strategy config
greedy:
max_symbols: 10
# beam strategy config
beam:
beam_size: 4
score_norm: true
return_best_hypothesis: False
softmax_temperature: 1.0 # scale the logits by some temperature prior to softmax
tsd_max_sym_exp: 10 # for Time Synchronous Decoding, int > 0
alsd_max_target_len: 5.0 # for Alignment-Length Synchronous Decoding, float > 1.0
maes_num_steps: 2 # for modified Adaptive Expansion Search, int > 0
maes_prefix_alpha: 1 # for modified Adaptive Expansion Search, int > 0
maes_expansion_beta: 2 # for modified Adaptive Expansion Search, int >= 0
maes_expansion_gamma: 2.3 # for modified Adaptive Expansion Search, float >= 0
# RNNT loss config
loss:
loss_name: "default"
warprnnt_numba_kwargs:
# FastEmit regularization: https://arxiv.org/abs/2010.11148
fastemit_lambda: 0.001 # Values can be in range [1e-4, 1e-2]. Generally, 0.001 is good start.
clamp: -1.0 # if > 0, applies gradient clamping in range [-clamp, clamp] for the joint tensor only.
optim:
name: novograd
lr: 0.05
# optimizer arguments
betas: [0.9, 0.0]
weight_decay: 0.001
# scheduler setup
sched:
name: CosineAnnealing
# scheduler config override
warmup_steps: 5000
warmup_ratio: null
min_lr: 1e-6
last_epoch: -1
trainer:
devices: 1 # number of gpus
max_epochs: 100
max_steps: -1 # computed at runtime if not set
num_nodes: 1 # Should be set via SLURM variable `SLURM_JOB_NUM_NODES`
accelerator: gpu
strategy: ddp
accumulate_grad_batches: 1
enable_checkpointing: False # Provided by exp_manager
logger: false # Provided by exp_manager
log_every_n_steps: 100 # Interval of logging.
val_check_interval: 1.0 # Set to 0.25 to check 4 times per epoch, or an int for number of iterations
check_val_every_n_epoch: 1 # RNNT decoding is slower than CTC, so eval takes longer. Increase value to speed up training slightly.
precision: 32 # RNNT requires a lot of memory, so precision 16 is very important. Use very small batch size for precision 32.
gradient_clip_val: 1.0 # Gradient norm clip value
sync_batchnorm: true
benchmark: false # needs to be false for models with variable-length speech input as it slows down training
exp_manager:
exp_dir: null
name: *name
create_tensorboard_logger: true
create_checkpoint_callback: true
checkpoint_callback_params:
monitor: "val_wer"
mode: "min"
save_top_k: 3
always_save_nemo: true
create_wandb_logger: false
wandb_logger_kwargs:
name: null
project: null
entity: null
resume_if_exists: false
resume_ignore_no_checkpoint: false
|