File size: 3,392 Bytes
465de74
a4546e8
 
 
 
 
 
 
 
 
 
 
 
 
 
465de74
 
a4546e8
 
465de74
a4546e8
465de74
a4546e8
 
 
 
 
 
 
 
 
 
465de74
a4546e8
465de74
a4546e8
465de74
a4546e8
465de74
a4546e8
465de74
a4546e8
465de74
a4546e8
465de74
a4546e8
465de74
a4546e8
465de74
a4546e8
 
 
 
 
 
 
 
 
 
 
465de74
a4546e8
465de74
a4546e8
 
 
 
 
 
 
 
 
 
 
465de74
 
a4546e8
465de74
a4546e8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- trl
- sft
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: classify-ISIN-STEP7_binary
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classify-ISIN-STEP7_binary

This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0002
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
- Accuracy Label  gd622:null: 0.0
- Accuracy Label Gd622:null: 1.0
- Accuracy Label Gd622:yes: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1  | Precision | Recall | Accuracy Label  gd622:null | Accuracy Label Gd622:null | Accuracy Label Gd622:yes |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---:|:---------:|:------:|:--------------------------:|:-------------------------:|:------------------------:|
| 0.2172        | 2.0833  | 100  | 0.1748          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |
| 0.0224        | 4.1667  | 200  | 0.0035          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |
| 0.0015        | 6.25    | 300  | 0.0014          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |
| 0.0098        | 8.3333  | 400  | 0.0007          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |
| 0.0094        | 10.4167 | 500  | 0.0004          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |
| 0.0003        | 12.5    | 600  | 0.0003          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |
| 0.0002        | 14.5833 | 700  | 0.0002          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |
| 0.0002        | 16.6667 | 800  | 0.0002          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |
| 0.0002        | 18.75   | 900  | 0.0002          | 1.0      | 1.0 | 1.0       | 1.0    | 0.0                        | 1.0                       | 1.0                      |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1