--- language: - id license: cc tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - magic_data, - titml - google/fleurs metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 id type: mozilla-foundation/common_voice_11_0 config: id split: test metrics: - name: Wer type: wer value: 6.059208706077654 --- # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the mozilla-foundation/common_voice_11_0, magic_data, titml, google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1022 - Wer: 6.0592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.173 | 0.66 | 1000 | 0.1654 | 9.8773 | | 0.0771 | 1.32 | 2000 | 0.1290 | 7.7515 | | 0.0569 | 1.99 | 3000 | 0.1056 | 7.1475 | | 0.0274 | 2.65 | 4000 | 0.1044 | 6.6264 | | 0.0072 | 3.31 | 5000 | 0.1023 | 6.3543 | | 0.009 | 3.97 | 6000 | 0.1000 | 6.3359 | | 0.0033 | 4.63 | 7000 | 0.1022 | 6.0592 | | 0.002 | 5.29 | 8000 | 0.1051 | 6.1560 | | 0.0028 | 5.96 | 9000 | 0.1052 | 6.1007 | | 0.0013 | 6.62 | 10000 | 0.1063 | 6.1376 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 2.7.0 - Tokenizers 0.13.1