File size: 2,729 Bytes
23c3d5f c63c37f 23c3d5f c63c37f 23c3d5f 24dc90c 23c3d5f 8e45d59 23c3d5f ca2e65f a1d409b a183c8f 7345b76 a183c8f 7345b76 64e1352 6659559 64e1352 6659559 64e1352 7345b76 64e1352 7345b76 23c3d5f 61d1c08 23c3d5f c63c37f 23c3d5f 7345b76 23c3d5f 61d1c08 23c3d5f a183c8f b3f4c64 8e45d59 23c3d5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
- tr
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: Wav2Vec2 Base Turkish by Cahya
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: tr
metrics:
- name: Test WER
type: wer
value: 8.147
- name: Test CER
type: cer
value: 2.802
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: tr
metrics:
- name: Test WER
type: wer
value: 28.011
- name: Test CER
type: cer
value: 10.66
---
#
This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial-cv](https://huggingface.co./cahya/wav2vec2-base-turkish-artificial-cv) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1337
- Wer: 0.1353
| | Dataset | WER | CER |
|---|-------------------------------|---------|----------|
| 1 | Common Voice 6.1 | 9.437 | 3.325 |
| 2 | Common Voice 7.0 | 8.147 | 2.802 |
| 3 | Common Voice 8.0 | 8.335 | 2.336 |
| 4 | Speech Recognition Community | 28.011 | 10.66 |
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
The following datasets were used for finetuning:
- [Common Voice 7.0 TR](https://huggingface.co./datasets/mozilla-foundation/common_voice_7_0) 'train', 'validation' and 'other' split were used for training.
- [Media Speech](https://www.openslr.org/108/)
- [Magic Hub](https://magichub.com/)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-06
- train_batch_size: 6
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1224 | 3.45 | 500 | 0.1641 | 0.1396 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|