|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.513 average_precision: 0.487 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.339 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.513 average_precision: 0.487 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.339 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.592 average_precision: 0.669 roc_auc: 0.824 recall_macro: 0.602 f1_macro: 0.534 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.592 average_precision: 0.669 roc_auc: 0.824 recall_macro: 0.602 f1_macro: 0.534 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.857 average_precision: 0.934 roc_auc: 0.931 recall_macro: 0.856 f1_macro: 0.856 |
|
=== new best MultinomialNB() (using recall_macro): |
|
accuracy: 0.857 average_precision: 0.934 roc_auc: 0.931 recall_macro: 0.856 f1_macro: 0.856 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.749 average_precision: 0.680 roc_auc: 0.749 recall_macro: 0.749 f1_macro: 0.749 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 0.883 average_precision: 0.943 roc_auc: 0.940 recall_macro: 0.882 f1_macro: 0.882 |
|
=== new best DecisionTreeClassifier(class_weight='balanced', max_depth=5) (using recall_macro): |
|
accuracy: 0.883 average_precision: 0.943 roc_auc: 0.940 recall_macro: 0.882 f1_macro: 0.882 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.833 average_precision: 0.857 roc_auc: 0.878 recall_macro: 0.832 f1_macro: 0.833 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.873 average_precision: 0.941 roc_auc: 0.060 recall_macro: 0.872 f1_macro: 0.873 |
|
Running LogisticRegression(class_weight='balanced', max_iter=1000) |
|
accuracy: 0.886 average_precision: 0.949 roc_auc: 0.051 recall_macro: 0.885 f1_macro: 0.886 |
|
=== new best LogisticRegression(class_weight='balanced', max_iter=1000) (using recall_macro): |
|
accuracy: 0.886 average_precision: 0.949 roc_auc: 0.051 recall_macro: 0.885 f1_macro: 0.886 |
|
|
|
|
|
Best model: |
|
LogisticRegression(class_weight='balanced', max_iter=1000) |
|
Best Scores: |
|
accuracy: 0.886 average_precision: 0.949 roc_auc: 0.051 recall_macro: 0.885 f1_macro: 0.886 |
|
|