--- library_name: transformers license: gemma base_model: google/gemma-7b tags: - alignment-handbook - trl - orpo - generated_from_trainer - trl - orpo - generated_from_trainer datasets: - silviasapora/low_quality_dpo7k model-index: - name: gemma-7b-borpo-low-quality-v2 results: [] --- # gemma-7b-borpo-low-quality-v2 This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the silviasapora/low_quality_dpo7k dataset. It achieves the following results on the evaluation set: - Loss: 1.6017 - Rewards/chosen: -0.0578 - Rewards/rejected: -0.0690 - Rewards/accuracies: 0.5714 - Rewards/margins: 0.0112 - Logps/rejected: -1.3795 - Logps/chosen: -1.1561 - Logits/rejected: 249.0934 - Logits/chosen: 304.2649 - Nll Loss: 1.5643 - Log Odds Ratio: -0.6745 - Log Odds Chosen: 0.3316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.4218 | 1.0 | 168 | 1.4488 | -0.0504 | -0.0580 | 0.5571 | 0.0076 | -1.1591 | -1.0071 | 273.7526 | 326.8029 | 1.4553 | -0.6712 | 0.2324 | | 1.0804 | 2.0 | 336 | 1.4225 | -0.0511 | -0.0591 | 0.5143 | 0.0080 | -1.1830 | -1.0220 | 278.2473 | 330.5067 | 1.4083 | -0.6897 | 0.2152 | | 0.5651 | 3.0 | 504 | 1.6017 | -0.0578 | -0.0690 | 0.5714 | 0.0112 | -1.3795 | -1.1561 | 249.0934 | 304.2649 | 1.5643 | -0.6745 | 0.3316 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1